
Introduction to XML

By:
R.G. (Dick) Baldwin

Introduction to XML

By:
R.G. (Dick) Baldwin

Online:
< http://cnx.org/content/col11207/1.18/ >

OpenStax-CNX

This selection and arrangement of content as a collection is copyrighted by R.G. (Dick) Baldwin. It is licensed under

the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Collection structure revised: December 2, 2014

PDF generated: February 8, 2016

For copyright and attribution information for the modules contained in this collection, see p. 182.

Table of Contents

1 Preface
1.1 Preface, Introduction to XML . 1

2 ITSE1356
2.1 A Brief Introduction to XML . 5
2.2 XML - Tags, Elements, Content, and Attributes . 10
2.3 XML - Well-Formed and Valid Documents . 16
2.4 Xml0100 Writing XML Review . 24
2.5 Xml0110 Transforming XML Review . 41
2.6 Xml0120 Validating XML Review . 52
2.7 Json0110: Preface to JSON . 60
2.8 Json0120: What is JSON? . 61
2.9 Json0130: JSON and JavaScript . 63
2.10 Json0140-Calling External JavaScript Functions . 83

3 Flex
3.1 XML - Namespaces - Flex 3 . 91
3.2 XML - Namespaces - Flex 4 . 101
3.3 The Default Application Container - Flex 3 and Flex 4 . 115
3.4 Using Flex 3 in a Flex 4 World . 135
3.5 Handling Slider Change Events in Flex 3 and Flex 4 . 153
3.6 Flex Resources . 178

Index . 181
Attributions .182

iv

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

Chapter 1

Preface

1.1 Preface, Introduction to XML1

1.1.1 Table of Contents

• Welcome (p. 1)
• ITSE1356 (p. 1)
• Flex (p. 2)
• Miscellaneous (p. 2)

1.1.2 Welcome

Welcome to my collection titled Introduction to XML 2 . This collection contains a set of lesson modules
designed to teach the fundamentals of XML. Some of the modules use Adobe Flex as the teaching vehicle.

This collection consists of two major sub-collections:

• ITSE1356 (p. 1)
• Flex (p. 2)

1.1.3 ITSE1356

The material in the ITSE1356 sub-collection, beginning with the module titled A Brief Introduction to
XML 3 , contains material that I use to teach the course identi�ed as ITSE 1356 - Extensible Markup
Language (XML) at Austin Community College in Austin, TX.

As of the Spring 2014 semester, the textbook for this course is XML: Visual QuickStart Guide, 2nd
Edition , By Kevin Howard Goldberg.

Fundamentals of XML
The �rst three modules in the ITSE1356 sub-collection provide tutorial material written by me on the

fundamentals of XML including:

• Structured documents
• Tags
• Elements
• Content

1This content is available online at <http://cnx.org/content/m47965/1.2/>.
2http://cnx.org/content/col11207/latest/
3http://cnx.org/content/m34546/latest/?collection=col11207/latest

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

1

2 CHAPTER 1. PREFACE

• Attributes
• Valid XML documents
• Well-formed XML documents

These modules are provided to supplement the material in the Goldberg textbook.
Review questions
The next three modules in the ITSE1356 sub-collection provide review questions, answers, and explana-

tions keyed to various chapters of the Goldberg textbook.
JSON
The review modules are followed by several modules on JSON (JavaScript Object Notation) . As a

lightweight data-interchange format, JSON is emerging as a strong alternative to the use of XML for that
purpose.

An introductory section on JSON is scheduled to be introduced into the ITSE 1356 course beginning
in the Fall 2014 semester. JSON material is not included in the Goldberg textbook mentioned earlier.
Therefore, these JSON modules will constitute the primary learning resource for the JSON section of the
course.

Flex
In addition to being the material that I use to teach the course identi�ed above, knowledge of the material

in this sub-collection is a prerequisite for understanding the material in the Flex sub-collection discussed
below.

1.1.4 Flex

The Flex material is not a part of the ITSE1356 course.
Flex is an XML application that can be used to create programs that run in Adobe's Flash player. Flex

is an alternative to the approach explained in Object-Oriented Programming (OOP) with ActionScript 4 .
The material in the ITSE1356 sub-collection is somewhat theoretical in nature. The material in the Flex

sub-collection, beginning with the module titled XML - Namespaces - Flex 3 5 , explains in practical terms
how to use the Flex application.

1.1.5 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Preface
• File: Flex0070Preface.htm
• Published: 11/08/13
• Revised: 02/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive

4http://cnx.org/content/col11202/latest/
5http://cnx.org/content/m34600/latest/?collection=col11207/latest

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

3

compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

4 CHAPTER 1. PREFACE

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

Chapter 2

ITSE1356

2.1 A Brief Introduction to XML1

2.1.1 Table of Contents

• Preface (p. 5)

· General (p. 5)
· Viewing tip (p. 5)

* Figures (p. 5)

· Supplemental material (p. 5)

• A brief introduction to XML (p. 6)
• Miscellaneous (p. 9)

2.1.2 Preface

2.1.2.1 General

This module is part of a collection dedicated to learning XML.

2.1.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures while you are reading about them.

2.1.2.2.1 Figures

• Figure 1 (p. 7) . The structure of a simple book.
• Figure 2 (p. 9) . Very simple XML syntax.
• Figure 3 (p. 9) . XML syntax with attributes.

2.1.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 2 .

1This content is available online at <http://cnx.org/content/m34546/1.5/>.
2http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

5

6 CHAPTER 2. ITSE1356

2.1.3 A brief introduction to XML

The name XML derives from e X tensible M arkup L anguage. According to Wikipedia,

"A markup language is a system for annotating text in a way which is syntactically distinguish-
able from that text."

In other words, when text has been annotated or marked up, the annotations can be easily distinguished
from the original text. For example, if you turn in a term paper and the professor annotates it with a red
pencil, you can easily distinguish her annotations from your original text. However, XML doesn't use color
to annotate text. Instead, XML uses specially formatted text to annotate text.

Structured documents
XML gives us a way to create and maintain structured documents in plain text that can be rendered

in a variety of di�erent ways. For example, before I upload this document to the Connexions 3 website for
publishing, I will convert into CNXML , which is one of the many �avors of XML. Once the document is
on the website in that format, programs on the website have the ability to render it in the form of a web page
(which you are probably reading right now) or in the form of a PDF document, which you can download
and print if you choose to do so.

There is a lot of jargon involved in XML. One of my objectives will be to explain the jargon.
What do I mean by a "structured document?"
I will answer this question by providing an example. A book is a structured document. In its simplest

form, a book may be composed of chapters. The chapters may be composed of sections. The sections may
contain illustrations and tables. The tables are composed of rows and columns. Thus, it would be possible
to draw a picture that illustrates the structure of a book.

What do I mean by "plain text?"
Characters such as the letters of the alphabet and punctuation marks are represented in the computer by

numeric values, similar to a simple substitution code that a child might devise. For example in one popular
encoding scheme (ASCII), the upper-case version of the character "A" is represented by the value 65, a "B"
is represented by the value 66, a "C" is represented by 67, etc.

Di�erent encoding schemes
The actual correspondence between the characters and the speci�c numeric values representing the char-

acters has been described by several di�erent encoding schemes over the years. One of the most common
and enduring schemes is a scheme that was devised a number of years ago by an organization known as the
American Standards Committee on Information Interchange. This encoding scheme is commonly known as
the ASCII code.

XML supports several encoding schemes
XML is not con�ned to the use of the ASCII encoding scheme. Several di�erent encoding schemes can

be used. However, all of them have been selected to make it possible to read a raw XML document without
the requirement for any special software.

What do I mean by a raw XML document?
By a raw XML document, I am referring to the string of sequential characters that makes up the docu-

ment, before any speci�c rendering has been applied to the document.
What do I mean by rendering?
The most common use of the word rendering in the information technology world means to present

something for human consumption. Thus, we render the speci�cations for a new house as a set of drawings.
When we speak of rendering a drawing or an image, we usually mean that we are going to present it in

a way that makes it look like a drawing or an image to a human observer.
When we speak of rendering a document, we usually mean that we are going to present it in a way that

a human will recognize such as a book, a newspaper, a web page, or some other document style.
Consider a newspaper, for example

3http://cnx.org/content/col11207/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

7

There are at least two di�erent ways to render a newspaper. One way is to print the information (daily
news) , mostly in black and white, on large sheets of low-grade paper commonly known as newsprint. This
is the rendering format that ends up on my driveway each morning.

Render on a computer screen
Another way to render a newspaper is to present the information on a computer screen, usually in full

color, with the information content trying to �ght its way through dozens of animated advertisements. This
is the rendering format 4 that ends up on my computer screen each day when I check for the news of the
day.

The base information doesn't change
The base information for the newspaper doesn't (or shouldn't) change for these two renderings. After

all, news is news and the content of the news shouldn't depend on how it is presented. What does change is
the manner in which that information is presented.

A newspaper is a structured document
A newspaper is a structured document consisting of pages, columns, etc. When the information content

of a newspaper is created and maintained in XML, that same information content can be rendered either on
newsprint paper or on your computer screen without having to rewrite the information content.

Achieving Structure
Consider the simple structure shown in Figure 1 that represents a book having two chapters with some

text in each chapter:

Figure 1 . The structure of a simple book.

Begin Book

Begin Chapter 1

Text for Chapter 1

End Chapter 1

Begin Chapter 2

Text for Chapter 2

End Chapter 2

End Book

Table 2.1

Obviously a real book has a lot more structure than this, such as the preface, the table of contents,
paragraphs in the text, and an alphabetical index. However, I am trying to keep this example as simple as
possible.

The Objective of XML
Perhaps the primary reason for using XML is to make it possible to share the same physical document

among di�erent computer systems in a way that they all understand.
No small task
That is no small task. Over the years, dozens of di�erent types of computers have been built, operating

under several di�erent operating systems, and running thousands of di�erent programs. As a result, insofar
as the exchange of structured documents is concerned, the computer world is a modern manifestation of
the "Tower of Babel" where everyone spoke a di�erent language. XML attempts to rectify this situation by
providing a common language for structured documents.

4http://www.foxnews.com/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

8 CHAPTER 2. ITSE1356

What Does XML Contribute?
Without getting into the technical details at this point, XML provides a de�nition of a simple scheme by

which the structure and the content of a document can be established. The resulting physical document is
so simple that any computer (or any human) can read it with only a modest amount of preparation. You
will sometimes see XML referred to as a "meta" language.

What Does Meta Mean?
In computer jargon, the term meta is often used to identify something that provides information about

something else. (If you want to impress someone at your next cocktail party, mention that meta information
is information about information.)

For example, consider the listings of stock prices, bond prices, and mutual fund prices that commonly
appear in most daily newspapers. The various tables on the page provide information about the bid and ask
prices for the various stock, bond, and mutual fund instruments.

Usually somewhere on the page, you will �nd an explanation as to how to interpret the information
presented throughout the remainder of the page. You could probably think of the information contained in
the explanation as meta information. It provides information about other information.

So, why might people refer to XML as a meta language?
If you write a book, XML doesn't tell you how to structure the document that represents your book.

Rather, it provides you with a set of rules that you can use to establish structure and content when you
create the document that represents your book. It is up to you to decide how you will use those rules to
establish the structure and content of your book.

Information about new languages
You might say that XML is a language that provides information about a new language that you are free

to invent. For example, Flex is a specialized programming language that is based on XML. XML doesn't
specify the language. Instead, XML provides the tools used by the inventors of the Flex programming
language to specify the structure of the language.

Di�erent �avors of XML
Similarly, XML doesn't specify CNXML. Instead, XML provides the tools used by the inventors of

CNXML to specify the format of documents suitable for publication on the Connexions 5 website. In the
past, I have also published documents on a particular IBM website. That website uses a di�erent �avor of
XML to specify the format of documents suitable for publication on the website.

Transportable
If you follow the rules for creating an XML document, the document that you create can be easily

transported among various computers and rendered in a variety of di�erent ways.
Multiple renderings
For example, you might want to have two di�erent renderings of your book. One rendering might be in

conventional printed format and the other rendering might be in an online format. The use of XML makes it
practical to render your book in two or more di�erent ways without any requirement to modify the original
document that you produce.

Applying XML
At this point, I am going to provide two di�erent examples of actual XML code, either of which might

reasonably represent the simple book example presented earlier in Figure 1. The �rst example is shown in
Figure 2.

Figure 2 . Very simple XML syntax.

continued on next page

5http://cnx.org/content/col11207/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

9

<book>
<chap>

Text for Chapter 1

</chap>

<chap>
Text for Chapter 2

</chap>
</book>

Table 2.2

If you compare this example with the book example given earlier (p. 7) , you should be able to see a one-
to-one correspondence between the "elements" in this XML code and the description of the book presented
earlier.

Introducing attributes
The example in Figure 3 provides an improvement over the example in Figure 2. Figure 3 provides an

"attribute" in each of the chapter elements. Each attribute speci�es the chapter number.

Figure 3 . XML syntax with attributes.

<book>
<chap number="1">

Text for Chapter 1

</chap>

<chap number="2">
Text for Chapter 2

</chap>
</book>

Table 2.3

That's a wrap
That's enough for this module. In the next module, I will begin discussing the syntax shown in Figure 3

and begin the explanation of tags , elements , content , and attributes .

2.1.4 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: A Brief Introduction to XML
• File: FlexXhtml0080.htm
• Revised: 12/02/14

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

10 CHAPTER 2. ITSE1356

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.2 XML - Tags, Elements, Content, and Attributes6

2.2.1 Table of Contents

• Preface (p. 10)

· General (p. 10)
· Viewing tip (p. 10)

* Figures (p. 10)
* Listings (p. 11)

· Supplemental material (p. 11)

• Tags, elements, content, and attributes (p. 11)
• Miscellaneous (p. 15)

2.2.2 Preface

2.2.2.1 General

This tutorial lesson is part of a series dedicated to learning XML.

2.2.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.2.2.2.1 Figures

• Figure 1 (p. 11) . Tag example.

6This content is available online at <http://cnx.org/content/m34548/1.5/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

11

2.2.2.2.2 Listings

• Listing 1 (p. 11) . Simple Flex MXML code.
• Listing 2 (p. 12) . An element containing tags, content, and an attribute.
• Listing 3 (p. 13) . A section of raw XHTML code.
• Listing 4 (p. 14) . Nested elements.

2.2.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 7 .

2.2.3 Tags, elements, content, and attributes

XML can be used to produce a variety of applications. Flex is an XML application developed by Adobe that
can be used to produce code that will run in the Adobe Flash player.

Listing 1 shows the code from a very simple Flex MXML �le. (Note that the code shown in Listing 1
is from Flex version 3.x. Code from version 4.x would be di�erent in several respects.)

Listing 1 . Simple Flex MXML code.

<?xml version="1.0" encoding="utf-8"?>
<!--DragAndDrop04-->

<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:cc="CustomClasses.*">
<cc:Driver/>

</mx:Application>

Table 2.4

I'm not going to explain the MXML code in this lesson. I am simply providing the code as an example
of an XML document so you can see what a real XML document looks like.

What is a tag?
I will refer to items enclosed in angle brackets, such as those shown in Figure 1, as tags.

Figure 1 . Tag example.

<book>

...

</book>

7http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

12 CHAPTER 2. ITSE1356

Table 2.5

The �rst tag shown in Figure 1 is often referred to as a start tag or an opening tag . The second tag
is often referred to as an end tag or a closing tag .

Note that the start tag and the end tag di�er only in that the end tag contains a slash character. However,
the start tag can also contain optional namespace indicators and attributes as discussed below.

What are elements, content, and attributes?
Listing 2 contains a start tag and an end tag with an attribute and some content .

Listing 2 . An element containing tags, content, and an attribute.

<chap number="1">
Text for Chapter 1

</chap>

Table 2.6

An element
The entire set of characters beginning with the start tag and ending with the end tag constitutes an

element 8 .
An element usually consists of a start tag and an end tag with the content sandwiched in between the two

tags, but there are exceptions to that rule. You will learn about those exceptions, including empty elements
later.

The tags
You have probably already recognized the tags in Listing 2 as the two sets of characters beginning with

a left angle bracket and ending with a right angle bracket.
The start tag may contain optional attributes. In Listing 2, a single attribute provides the number value

for the chapter.
The start tag may also contain namespace information. There is no namespace information in Listing

2. You will learn about namespaces in a future lesson.
The content
The set of characters in between the tags constitutes the content .
An attribute
The set of characters following the word chap in the start tag constitutes an attribute .
The term attribute is commonly used in computer science and usually has about the same meaning,

regardless of whether the discussion revolves around XML, Java programming, or database management.
An attribute often serves to partially describe the thing to which it refers.

Things have attributes
A chapter in a book is a thing and a chapter has attributes such as its number. A person is also a thing.

Therefore, a person also has attributes. Each attribute has a value. Here is a list of some of the attributes
(along with their values) that might be used to describe a person:

• name="Joe"
• height="84"
• weight="176"
• complexion="pale"
• sex="male"
• training="Java programmer"

8http://www.w3.org/TR/REC-xml/#sec-starttags

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

13

• degree="Masters"

Obviously, there are many more attributes that could be used to describe a person.
The importance of an attribute depends on the context
Whether or not a particular attribute for a person is important depends on the context in which the

person is being considered. For example, if the person is being considered in the context of a candidate for
a basketball team, the height, weight, and sex attributes will probably be important.

On the other hand, if the person is being considered in the context of a candidate for employment as a
computer programmer, the height, weight, and sex attributes should not be important at all, but the training
and degree attributes might be very important.

Why does XML use attributes?
The description of XML that I provided in an earlier lesson is repeated here for convenience:

"XML gives us a way to create and maintain structured documents in plain text that can be
rendered in a variety of di�erent ways."

Attributes often provide information that is needed for the rendering process, but attributes have many
other uses as well.

Rendering
I suggested earlier that the most common modern use of the word rendering means to present something

for human consumption. I gave an example of a newspaper that can either be rendered on newsprint paper
or can be rendered on a computer screen.

A rendering engine
If the newspaper (structured document) is created and maintained as an XML document, then some

sort of computer program (often referred to as a rendering engine) will probably be used to render it into
the desired presentation format.

This document
For example, the original version of this document was created as a special �avor of an XML document

known as an XHTML document. Listing 3 shows a short sample of the raw XML code in the original
document.

Listing 3 . A section of raw XHTML code.

<p> <strong style="color:#ff0000" ">A rendering

engine " </p>
<p>If the newspaper (structured document) is

created and maintained as an XML document, then

some sort of computer program (often referred to

as a rendering engine) will probably be used to

render it into the desired presentation format. </p>
<p>For example, this document is a special flavor

of an XML document known as an XHTML document.

Listing 3 shows a short sample of the raw XML

code that was delivered to your computer from my

website. </p>

Table 2.7

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

14 CHAPTER 2. ITSE1356

Created using a WYSIWYG XHTML editor
I originally created the document as an XHTML document using a WYSIWYG XHTML editor that

behaves much like a word processor. (If you don't know what WYSIWYG means, Google it.) Of course,
the document has since undergone quite a lot of editing so the �nal XHTML version probably doesn't match
the XHTML code in Listing 3.

Transform to CNXML
Later on, I used a Java program of my own design to transform the �nal XHTML document into another

�avor of XML known as CNXML for publishing on the Connexions 9 website.
That illustrates another characteristic of XML. Because the formats of certain �avors of XML documents

are well de�ned, it is often practical to transform them from one �avor to another �avor.
That makes it possible for me to create the document using a program that is very similar to a word

processor and then transform the output of that program into a fairly cryptic format that satis�es the
publishing requirements of the website.

Your browser is rendering the document
When you accessed the document from the Connexions 10 website, it was transformed back into an

XHTML document and sent to your computer.
As you can see in Listing 3, viewing raw XHTML isn't very enjoyable. Fortunately, your browser is acting

as a rendering engine to render the raw XHTML text into a much more pleasing presentation format.
Back to the book example
A book that is created and maintained as an XML document could be rendered in a variety of di�erent

ways. Whichever way it is rendered, however, it would probably be useful to separate and number the
chapters. Therefore, the value of the number attribute could be used by the rendering engine to present
the chapter number for a speci�c rendering.

In some renderings, the number might appear on an otherwise blank page that begins a new chapter. In
a di�erent rendering, the chapter number might appear in the upper right or left-hand corner of each page.

Tell me again, what is an element?
As I explained earlier, an element usually consists of a start tag (with optional attributes and

namespace information) , an end tag , and the content sandwiched in between as shown earlier in Listing
2.

Elements can be nested
Elements can be nested inside other elements as shown in Listing 4.

Listing 4 . Nested elements.

<book>
<chapter number="1">

Content for Chapter 1

</chapter>

<chapter number="2">
Content for Chapter 2

</chapter>
</book>

Table 2.8

9http://cnx.org/content/col11207/latest/
10http://cnx.org/content/col11207/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

15

In Listing 4, two chapter elements are nested inside a book element.
Why does XML use elements?
It is probably fair to say that the element constitutes the fundamental unit of information in an XML

document. For example, the element de�nes the type of information, such as chapter in our book example.
Sandwiched in between the start tag and the end tag of an element, we �nd the raw information (content)

that the XML document is designed to convey. For a text document, you are likely to �nd a lot of content
between the tags. For example, in Listing 3, there are several lines of text between the paragraph tags
identi�ed by the p and the /p enclosed in angle brackets.

Once again, what is content?
Of the four terms mentioned earlier, (tags, elements, content, and attributes) , content is the easy one.

Content is sandwiched in between the start tag and the end tag of an element. Usually the content of the
elements contains the information that the XML document is designed to convey. In other words, this is
where we put the information for which the document was created. The tags and attributes are there to
create the structure.

For example, if the XML document is being used for the creation and maintenance of material for
a newspaper, the content constitutes the news. If the XML document is being used for the creation and
maintenance of a Java programming textbook, the content contains the information about Java programming
that we want to convey to the student.

Why do we need structure?
One of the primary objectives of XML is to separate content from presentation. If we insert the raw

material as content into a structure de�ned by the tags, elements, and attributes, then that raw material
can be presented in a variety of ways.

2.2.4 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: XML - Tags, Elements, Content, and Attributes
• File: FlexXhtml0082.htm
• Revised: 12/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

16 CHAPTER 2. ITSE1356

2.3 XML - Well-Formed and Valid Documents11

2.3.1 Table of Contents

• Preface (p. 16)

· General (p. 16)
· Viewing tip (p. 16)

* Figures (p. 16)
* Listings (p. 16)

· Supplemental material (p. 16)

• Well-formed and valid documents (p. 17)

· Valid documents and the DTD (p. 17)
· Well-formed documents (p. 21)
· Validity and well-formed requirements recap (p. 22)

• Miscellaneous (p. 22)

2.3.2 Preface

2.3.2.1 General

This module is part of a collection dedicated to learning XML.

2.3.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.3.2.2.1 Figures

• Figure 1 (p. 17) . What is a DTD?
• Figure 2 (p. 21) . Why do we need well-formed XML documents?

2.3.2.2.2 Listings

• Listing 1 (p. 19) . Raw XHTML code.
• Listing 2 (p. 20) . A small portion of the XHTML DTD.
• Listing 3 (p. 21) . Required syntax for an empty element.

2.3.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 12 .

11This content is available online at <http://cnx.org/content/m34557/1.8/>.
12http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

17

2.3.3 Well-formed and valid documents

In previous lessons, I have discussed tags, elements, content, and attributes in detail. The time has come to
take up the following topics:

• Well-formed documents
• Valid documents
• The DTD

2.3.3.1 Valid documents and the DTD

What is a DTD?
Figure 1 contains a quotation from the XML FAQ 13 that describes a DTD.

Figure 1 . What is a DTD?

"A DTD is usually a file (or several files to be used

together) which contains a formal definition of a particular

type of document. This sets out what names can be used for

elements, where they may occur, and how they all fit together.

For example, if you want a document type to describe <LIST>s
which contain <ITEM>s, part of your DTD would contain

something like

<!ELEMENT item (#pcdata)>
<!ELEMENT list (item)+>

This defines items containing text, and lists containing

items.

It's a formal language which lets processors automatically

parse a document and identify where every element comes and

how they relate to each other, so that stylesheets, navigators,

browsers, search engines, databases, printing routines, and

other applications can be used."

Table 2.9

DTDs are complicated
I included the above quotation to emphasize one very important point � DTDs are complicated. The

creation of a DTD of any signi�cance is a very complex task.
The good news!
The good news is that many of you will never need to worry about having to create a DTD for two

reasons:

1. In the most fundamental sense, XML does not require the use of a DTD.
2. Even when it is advisable to use a DTD with XML, someone else may already have created the DTD

on your behalf.

13http://xml.silmaril.ie/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

18 CHAPTER 2. ITSE1356

A validating XHTML editor
For example, I wrote the original version of this HTML document using a validating XHTML editor

named Amaya 14 . Even though the editor uses a DTD to con�rm that my document is a valid XHTML
document (and warns me if it isn't) , it wasn't necessary for me to write the DTD. The people who wrote
the editor also wrote the DTD.

Three Parts
It is reasonable to think of an XML document as consisting of three parts, some of which are optional.

I'm going to refer to the parts as �les just so I will have something to call them (but they don't have to be
separate physical �les) .

One �le contains the information content of the document (words, pictures, etc.) . This is the part
containing tags, elements, content, and attributes that the author wants to expose to the client. I have
discussed this part in previous lessons.

A second �le is the DTD, which meets the de�nition given above.
A third �le is a stylesheet that establishes how the content that conforms to the DTD is to be rendered

on the output device. This is how the author wants the material to be presented to the client.
Rendering
For example a tag with an attribute of "red" might cause something to be presented bright red according

to one stylesheet and dull red according to another stylesheet. (It might even be presented as some shade
of green according to still another stylesheet.)

With XML, the DTD is optional but the stylesheet (or some processing mechanism that substitutes for
a stylesheet) is generally required. Something has to be able to render the content in the manner that the
author intended it to be rendered. Otherwise, the client will be forced to view the document as raw XML
text, which usually isn't very enjoyable.

A DTD can be very complex
Once again, according to the XML FAQ :

"... the design and construction of a DTD can be a complex and non-trivial task, so XML has
been designed so it can be used either with or without a DTD. DTDless operation means you can
invent markup without having to de�ne it formally. To make this work, a DTDless �le in e�ect
'de�nes' its own markup, informally, by the existence and location of elements where you create
them. But when an XML application such as a browser encounters a DTDless �le, it needs to be
able to understand the document structure as it reads it, because it has no DTD to tell it what to
expect, so some changes have been made to the rules."

Without the technical jargon please
In other words, it is entirely possible to create an XML document without the requirement for a DTD.
What is a valid document?
In the normal sense of the word, if something is invalid , that usually means that it is not any good.

However, that is not the case for XML. An invalid XML document can be a perfectly good and useful
document.

A valid XML document is one that conforms to an existing DTD in every respect.
In other words, unless the DTD allows a tag with the name "color", an XML document being validated

against that DTD containing a tag with that name is not valid.
However, because XML does not require a DTD, an XML processor cannot require validation of the

document. Many very useful XML documents are not valid, simply because they were not constructed
according to an existing DTD.

An XHTML document
The document that you are now reading was originally created as a valid XML document before being

transformed to CNXML and uploaded to the Connexions website. It was created as a special �avor of

14http://www.w3.org/Amaya/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

19

XML known as XHTML. As I mentioned earlier, the document was created using W3C's WYSIWYG Edi-
tor/Browser named Amaya 15 . (Subsequent edited versions have been created using Microsoft Expression
Web versions 3 and 4.)

What you are probably reading now is a rendered version of the document after having gone through a
couple of edits and transformations. However, if you were to have looked at the raw XHTML code at the
beginning of the document before it was transformed to CNXML, you would have seen something like the
XML code shown in Listing 1.

Listing 1 . Raw XHTML code.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type"

content="text/html; charset=iso-8859-1" />
<title>Flex Programming by Richard G. Baldwin</title>
<meta name="generator"

content="Amaya, see http://www.w3.org/Amaya/" />
</head>

Table 2.10

(Note that some extra line breaks were inserted in Listing 1 to force it to �t into this narrow publication
format.)

The DTD
Note in particular the code that begins with "http: in Listing 1. This code speci�es the DTD that is

used to validate the XML code. If I had inadvertently entered some XML code that caused the document
to become invalid, a red warning would have appeared in the bottom right corner of the Amaya editor.

A download site
If you examine the DTD information in Listing 1 carefully, you will see that it actually speci�es a location

on the Internet from which you can download the DTD �le. You can download it and open it in a text editor,
such as Windows Notepad, to see a sample of a really complicated DTD.

Listing 2 shows a small portion of the XHTML DTD downloaded from the address shown in Listing 1.

15http://www.w3.org/Amaya/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

20 CHAPTER 2. ITSE1356

Listing 2 . A small portion of the XHTML DTD.

<!--
Extensible HTML version 1.0 Transitional DTD

This is the same as HTML 4 Transitional except for

changes due to the differences between XML and SGML.

Namespace = http://www.w3.org/1999/xhtml

For further information, see: http://www.w3.org/TR/

xhtml1

Copyright (c) 1998-2002 W3C (MIT, INRIA, Keio),

All Rights Reserved.

This DTD module is identified by the PUBLIC and

SYSTEM identifiers:

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd"

$Revision: 1.2 $

$Date: 2009-12-14$

-->

<!--====== Character mnemonic entities =============-->

<!ENTITY % HTMLlat1 PUBLIC

"-//W3C//ENTITIES Latin 1 for XHTML//EN"

"xhtml-lat1.ent">
%HTMLlat1;

<!ENTITY % HTMLsymbol PUBLIC

"-//W3C//ENTITIES Symbols for XHTML//EN"

"xhtml-symbol.ent">
%HTMLsymbol;

<!ENTITY % HTMLspecial PUBLIC

"-//W3C//ENTITIES Special for XHTML//EN"

"xhtml-special.ent">
%HTMLspecial;

Table 2.11

(Once again, I inserted some line breaks into the text in Listing 2 to force it to �t into this publication
format.)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

21

2.3.3.2 Well-formed documents

XML derives from an earlier more complicated markup language known as SGML. Being well-formed is not
a property of SGML. The concept of being well-formed was introduced as a requirement of XML, apparently
to deal with the situation where a DTD is not available.

Why do we need well-formed XML documents?
Once again, according to the XML FAQ 16 :

Figure 2 . Why do we need well-formed XML documents?

"For example, HTML's element is defined as `EMPTY':

it doesn't have an end-tag. Without a DTD, an XML application

would have no way to know whether or not to expect an end-tag

for an element, so the concept of `well-formed' has been

introduced.

This makes the start and end of every element, and the

occurrence of EMPTY elements completely unambiguous."

Table 2.12

All XML documents must be well-formed
XML documents need not be valid, but ALL XML DOCUMENTS MUST BEWELL-FORMED

.
To be well-formed...
A well-formed XML document must meet several di�erent criteria.
To begin with, in a well-formed XML document, all elements that can contain character data must have

both start and end tags.
What is character data?
For purposes of this explanation, let's just say that the content that we discussed earlier comprises

character data.
Attribute values must be in quotes
All attribute values must be in quotes (apostrophes or double quotes) . You can surround the value

with apostrophes (single quotes) if the attribute value contains a double quote. An attribute value that is
surrounded by double quotes can contain apostrophes.

Dealing with empty elements
EMPTY elements (those that contain no character data) must be written in one of the two ways shown

in Listing 3, and for several reasons, the �rst way is usually considered preferable.

Listing 3 . Required syntax for an empty element.

<mx:Button label="My button."/>
<mx:Button label="My button."></mx:Button>

Table 2.13

16http://xml.silmaril.ie/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

22 CHAPTER 2. ITSE1356

Don't forget that even an EMPTY element can contain one or more attributes along with namespace
information inside the start tag. (In the case of Listing 3, mx: is namespace information and the label
information is an attribute.)

Markup characters and entities
There are also rules regarding the inclusion of markup characters.

No markup characters are allowed

For a document to be well-formed, it must not have markup

characters such as angle brackets or ampersands in the text

data. If such characters are needed, you can represent them

using < and & instead.

These special combinations of characters that represent other

characters, such as < that represents the left angle

bracket are called entities.

Nesting
Elements must nest properly. If one element contains another element, the entire second element must

be de�ned inside the start and end tags of the �rst element. Every element in an XML document, other
than the root element, is nested inside another element.

2.3.3.3 Validity and well-formed requirements recap

Valid XML �les are those that have a DTD and that conform to the DTD.
All XML �les must be well-formed, but there is no requirement for them to be valid.
A DTD is not required in which case validity is impossible to establish. However, if XML documents do

have a DTD, they must conform to it, which makes them valid.
Why use a DTD if it is not required?
There are many reasons to use a DTD, in spite of the fact that XML doesn't require one. One reason is

that the use of a DTD makes it possible to enforce format speci�cations. For example, in a document that
represents a book, the DTD could require that paragraph elements can occur only inside of page elements.
It could also require that page elements can occur only inside chapter elements. It could require that there
be a preface element and that it must occur before any chapter elements.

Enforcing format speci�cations
For example, by creating this document using Amaya and the DTD for XHTML, I was required to

produce a document that conformed to the DTD for XHTML documents. Otherwise, I would have gotten
warnings from the editor and would have been required to acknowledge that the document didn't conform
to the DTD in order to save it.

On one hand, that sounds like a lot of hassle. On the other hand, by creating a document that conforms
to the DTD for XHTML, I can be sure that it will render properly in any browser that is guaranteed to
properly render XHTML documents.

2.3.4 Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

• Module name: XML - Well-Formed and Valid Documents
• File: FlexXhtml0084.htm
• Revised: 08/17/15

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

23

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

24 CHAPTER 2. ITSE1356

2.4 Xml0100 Writing XML Review17

2.4.1 Table of Contents

• Preface (p. 24)
• Questions (p. 24)

· 1 (p. 24) , 2 (p. 24) , 3 (p. 24) , 4 (p. 24) , 5 (p. 25) , 6 (p. 25) , 7 (p. 25) , 8 (p. 25) , 9 (p. 25)
, 10 (p. 25) , 11 (p. 25) , 12 (p. 25) , 13 (p. 25) , 14 (p. 25) , 15 (p. 26) , 16 (p. 26) , 17 (p. 26)
, 18 (p. 26) , 19 (p. 26) , 20 (p. 26) , 21 (p. 26) , 22 (p. 26) , 23 (p. 26) , 24 (p. 26) , 25 (p. 27)
, 26 (p. 27) , 27 (p. 27) , 28 (p. 27) , 29 (p. 27) , 30 (p. 28) , 31 (p. 28) , 32 (p. 28) , 33 (p. 28)
, 34 (p. 28) , 35 (p. 28) , 36 (p. 28) , 37 (p. 28) , 38 (p. 29) , 39 (p. 29) , 40 (p. 29) , 41 (p. 29)
, 42 (p. 29) , 43 (p. 29) , 44 (p. 29) , 45 (p. 29) , 46 (p. 30) , 47 (p. 30) , 48 (p. 30) , 49 (p. 31)
, 50 (p. 31)

• Listings (p. 32)
• Answers (p. 33)
• Miscellaneous (p. 39)

2.4.2 Preface

This material is published in support of the course identi�ed as ITSE 1356 - Extensible Markup Language
(XML) at Austin Community College in Austin, TX. As of the Spring 2014 semester, the textbook for this
course is XML: Visual QuickStart Guide, 2nd Edition. By Kevin Howard Goldberg.

This module contains review questions, answers, and explanations keyed to the Introduction and Chapter
1 of the textbook.

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.4.3 Questions

2.4.3.1 Question 1 .

True or False: XML is an abbreviation for "eXtending More Leverage."
Answer 1 (p. 39)

2.4.3.2 Question 2

True or False: XML is a speci�cation for storing information.
Answer 2 (p. 39)

2.4.3.3 Question 3

True or False: XML is a speci�cation for describing the structure of information.
Answer 3 (p. 39)

2.4.3.4 Question 4

True or False: XML has a large vocabulary of prede�ned tags.
Answer 4 (p. 39)

17This content is available online at <http://cnx.org/content/m47966/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

25

2.4.3.5 Question 5

True or False: XML is a markup language.
Answer 5 (p. 39)

2.4.3.6 Question 6

True or False: XML is a set of rules for de�ning custom markup languages.
Answer 6 (p. 39)

2.4.3.7 Question 7

True or False: The XML speci�cation makes it possible for people to de�ne their own markup languages so
that others cannot use those markup languages.

Answer 7 (p. 38)

2.4.3.8 Question 8

True or False: HTML is a language for storing and carrying information while XML is a language for
displaying information.

Answer 8 (p. 38)

2.4.3.9 Question 9

True or False: XML is easily extended and adapted.
Answer 9 (p. 38)

2.4.3.10 Question 10

True or False: While XML works well with computers, it was not designed to be easily read by humans.
Answer 10 (p. 38)

2.4.3.11 Question 11

True or False: XML is a proprietary speci�cation that was invented by Microsoft.
Answer 11 (p. 38)

2.4.3.12 Question 12

True or False: While HTML is used to format data for display, XML describes and is the data.
Answer 12 (p. 38)

2.4.3.13 Question 13

True or False: All modern browsers know how to display an XML document in the manner intended by the
author of the document.

Answer 13 (p. 38)

2.4.3.14 Question 14

True or False: One way to specify how an XML document is to be displayed is by using XSL or eXtensible
Stylesheet Language.

Answer 14 (p. 38)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

26 CHAPTER 2. ITSE1356

2.4.3.15 Question 15

True or False: XSL is made up of three languages: XSLT, XPath, and XML.
Answer 15 (p. 37)

2.4.3.16 Question 16

True or False: Because every author is free to de�ne her own tags, it is not possible to de�ne the structure
of an XML document.

Answer 16 (p. 37)

2.4.3.17 Question 17

True or False: All standard browsers can read XML documents, use XML schemas (DTD and XML Schema),
and interpret XSL to format and display XML documents.

Answer 17 (p. 37)

2.4.3.18 Question 18

True or False: It is common practice to use XML to manage and organize information and to use XSL to
convert the XML into HTML.

Answer 18 (p. 37)

2.4.3.19 Question 19

True or False: XML is a language.
Answer 19 (p. 37)

2.4.3.20 Question 20

True or False: Every custom markup language created using the XML speci�cation must adhere to XML's
underlying grammar.

Answer 20 (p. 37)

2.4.3.21 Question 21

True or False: XML documents are saved with a .rss extension.
Answer 21 (p. 37)

2.4.3.22 Question 22

True or False: An XML document simply stores and describes data.
Answer 22 (p. 37)

2.4.3.23 Question 23

True or False: Good practice suggests that the names of the tags in an XML document should describe the
data they contain.

Answer 23 (p. 37)

2.4.3.24 Question 24

True or False: The �rst line of an XML document, (known as the XML declaration) , should be as shown
in Listing 1 below (although the version number may be di�erent at some point in the future):

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

27

Listing 1 . Question 24.

<?xml version="1.0"?>

Table 2.14

Answer 24 (p. 36)

2.4.3.25 Question 25

True or False: Just like HTML documents, XML documents may have multiple root elements.
Answer 25 (p. 36)

2.4.3.26 Question 26

True or False: A root element can have one or more child elements that describe the root element in more
detail.

Answer 26 (p. 36)

2.4.3.27 Question 27

True or False: In Listing 2 below, units is called a parameter

Listing 2 . Question 27.

<height units="inches">66</height>

Table 2.15

Answer 27 (p. 36)

2.4.3.28 Question 28

True or False: The terminology "well-formed" is commonly used in conjunction with an XML document.
Answer 28 (p. 36)

2.4.3.29 Question 29

True or False: All of the following must be true in order for an XML document to be well-formed:

• A root element is required.
• Closing tags are required.
• Elements must be properly nested.
• Values must be enclosed in quotation marks.
• The document must be valid.

Answer 29 (p. 36)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

28 CHAPTER 2. ITSE1356

2.4.3.30 Question 30

True or False: An XML attribute is the most basic unit of an XML document.
Answer 30 (p. 36)

2.4.3.31 Question 31

True or False: An XML element can contain text, attributes, and other elements.
Answer 31 (p. 36)

2.4.3.32 Question 32

True or False: Attributes are contained within an element's opening tag and have values that are delimited
by quotation marks.

Answer 32 (p. 36)

2.4.3.33 Question 33

True or False: Tags that begin with the characters in the �rst line of Listing 3 and end with the characters
in the second line of Listing 3 are called processing instructions.

Listing 3 . Question 33.

<?
?>

Table 2.16

Answer 33 (p. 35)

2.4.3.34 Question 34

True or False: Processing instructions must be enclosed by the opening and closing tags of the root element.
Answer 34 (p. 35)

2.4.3.35 Question 35

True or False: XML is not sensitive to upper and lower case.
Answer 35 (p. 35)

2.4.3.36 Question 36

True or False: Element and attribute names must begin with a letter, a number, an underscore, or a colon.
Answer 36 (p. 35)

2.4.3.37 Question 37

True or False: Closing tags are not optional in XML.
Answer 37 (p. 35)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

29

2.4.3.38 Question 38

True or False: Element names may begin with upper-case XML.
Answer 38 (p. 35)

2.4.3.39 Question 39

True or False: The root element can have child elements, and child elements can have other child elements
provided that they are properly nested.

Answer 39 (p. 35)

2.4.3.40 Question 40

True or False: An attribute stores additional information about an element without adding text to the
element's content.

Answer 40 (p. 35)

2.4.3.41 Question 41

True or False: Attribute values must be in double quotes.
Answer 41 (p. 34)

2.4.3.42 Question 42

True or False: Empty elements are elements that don't have any content of their own.
Answer 42 (p. 34)

2.4.3.43 Question 43

True or False: Empty elements may, and frequently will have attributes that store data about the element
itself.

Answer 43 (p. 34)

2.4.3.44 Question 44

True or False: The syntax shown in Listing 4 below is the correct syntax for an empty element:

Listing 4 . Question 44.

<image file="my_picture.jpg" width="400" height="200"/>

Table 2.17

Answer 44 (p. 34)

2.4.3.45 Question 45

True or False: The syntax shown in Listing 5 below is the correct syntax for an empty element:

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

30 CHAPTER 2. ITSE1356

Listing 5 . Question 45.

<image file="my_picture.jpg"></image>

Table 2.18

Answer 45 (p. 34)

2.4.3.46 Question 46

True or False: The correct syntax for an XML comment is shown in Listing 6 below:

Listing 6 . Question 46.

<?This is a comment?>

Table 2.19

Answer 46 (p. 34)

2.4.3.47 Question 47

True or False: Comments may be nested.
Answer 47 (p. 34)

2.4.3.48 Question 48

True or False: XML has the �ve prede�ned entities shown in Listing 7 below:

Listing 7 . Question 48.

& represents an ampersand

< represents a left angle bracket

> represents a right angle bracket

" represents a double quotation mark

' represents a single quotation mark or apostrophe

Table 2.20

Answer 48 (p. 33)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

31

2.4.3.49 Question 49

True or False: The CDATA syntax shown in Listing 8 below can be used to cause the XML processor to
ignore angle brackets, ampersands, and other characters that might otherwise be interpreted as XML control
characters:

Listing 8 . Question 49.

Table 2.21

Answer 49 (p. 33)

2.4.3.50 Question 50

True or False: CDATA sections can be nested.
Answer 50 (p. 33)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

32 CHAPTER 2. ITSE1356

2.4.4 Listings

• Listing 1 (p. 27) . Question 24.
• Listing 2 (p. 27) . Question 27.
• Listing 3 (p. 28) . Question 33.
• Listing 4 (p. 29) . Question 44.
• Listing 5 (p. 30) . Question 45.
• Listing 6 (p. 30) . Question 46.
• Listing 7 (p. 30) . Question 48.
• Listing 8 (p. 31) . Question 49.
• Listing 9 (p. 34) . Answer 46..

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

33

2.4.5 Answers

2.4.5.1 Answer 50

False
Explanation: Goldberg page 15
Back to Question 50 (p. 31)

2.4.5.2 Answer 49

False
There is a syntax error in the xml code. The word CDATA should be followed by a left square bracket

as in ...[CDATA[
Otherwise the answer would be True because that is the purpose of the CDATA syntax.
Explanation: Goldberg page 15
Back to Question 49 (p. 31)

2.4.5.3 Answer 48

True
Explanation: Goldberg page 14
Back to Question 48 (p. 30)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

34 CHAPTER 2. ITSE1356

2.4.5.4 Answer 47

False
Explanation: Comments may not be nested. Goldberg page 13
Back to Question 47 (p. 30)

2.4.5.5 Answer 46

False
Explanation: The correct syntax for a comment is shown in Listing 9 below. Goldberg page 13

Listing 9 . Answer 46.

<!--This is a comment-->

Table 2.22

Back to Question 46 (p. 30)

2.4.5.6 Answer 45

True
Explanation: This is not the only correct syntax for an empty element. Goldberg page 12
Back to Question 45 (p. 29)

2.4.5.7 Answer 44

True
Explanation: This is not the only correct syntax for an empty element. Goldberg page 12
Back to Question 44 (p. 29)

2.4.5.8 Answer 43

True
Explanation: Goldberg page 12
Back to Question 43 (p. 29)

2.4.5.9 Answer 42

True
Explanation: Goldberg page 12
Back to Question 42 (p. 29)

2.4.5.10 Answer 41

False
Explanation: Attribute values must be in quotes. They can be either single or double quotes as long as

they match within a single attribute. Goldberg page 11
Back to Question 41 (p. 29)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

35

2.4.5.11 Answer 40

True
Explanation: Goldberg page 11
Back to Question 40 (p. 29)

2.4.5.12 Answer 39

True
Explanation: Goldberg page 10
Back to Question 39 (p. 29)

2.4.5.13 Answer 38

False
Explanation: Element names may not begin with the letters xml in any combination of upper and

lower-case characters. Goldberg page 9
Back to Question 38 (p. 29)

2.4.5.14 Answer 37

True
Explanation: Goldberg page 9
Back to Question 37 (p. 28)

2.4.5.15 Answer 36

False
Explanation: : Element and attribute names must begin with a letter, an underscore, or a colon. A

number is not allowed. Goldberg page 8
Back to Question 36 (p. 28)

2.4.5.16 Answer 35

False
Explanation: Case matters. Goldberg page 8
Back to Question 35 (p. 28)

2.4.5.17 Answer 34

False
Explanation: Goldberg page 5
Back to Question 34 (p. 28)

2.4.5.18 Answer 33

True
Explanation: For example, the XML Declaration is a processing instruction. Processing instructions are

used for other purposes as well. Goldberg page 7
Back to Question 33 (p. 28)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

36 CHAPTER 2. ITSE1356

2.4.5.19 Answer 32

True
Explanation: Goldberg page 6
Back to Question 32 (p. 28)

2.4.5.20 Answer 31

True
Explanation: Goldberg page 6
Back to Question 31 (p. 28)

2.4.5.21 Answer 30

False
Explanation: An XML element is the most basic unit of an XML document. Goldberg page 6
Back to Question 30 (p. 28)

2.4.5.22 Answer 29

False
Explanation: It is not necessary for an XML document to be valid in order to be well-formed. Goldberg

page 5
Back to Question 29 (p. 27)

2.4.5.23 Answer 28

True
Explanation: Goldberg page 5
Back to Question 28 (p. 27)

2.4.5.24 Answer 27

False
Explanation: The term units is called an attribute. Goldberg page 4
Back to Question 27 (p. 27)

2.4.5.25 Answer 26

True
Explanation: Goldberg page 4
Back to Question 26 (p. 27)

2.4.5.26 Answer 25

False
Explanation: An XML document can have only one root element. Goldberg page 4
Back to Question 25 (p. 27)

2.4.5.27 Answer 24

True
Explanation: Goldberg page 4
Back to Question 24 (p. 26)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

37

2.4.5.28 Answer 23

True
Explanation: Goldberg page 4
Back to Question 23 (p. 26)

2.4.5.29 Answer 22

True
Explanation: Goldberg page 4
Back to Question 22 (p. 26)

2.4.5.30 Answer 21

False
Explanation: XML documents are saved with a .xml extension. Goldberg page 4
Back to Question 21 (p. 26)

2.4.5.31 Answer 20

True
Explanation: Goldberg page 3
Back to Question 20 (p. 26)

2.4.5.32 Answer 19

False
Explanation: XML is not a language itself. Rather, an XML document is written in a custom markup

language, according to the XML speci�cation. Goldberg page 3
Back to Question 19 (p. 26)

2.4.5.33 Answer 18

True
Explanation: Goldberg page xv
Back to Question 18 (p. 26)

2.4.5.34 Answer 17

True
Explanation: Goldberg page xv
Back to Question 17 (p. 26)

2.4.5.35 Answer 16

False
Explanation: You can de�ne the structure of an XML document by using a DTD (Document Type

De�nition) or with the XML Schema language. Goldberg page xiv
Back to Question 16 (p. 26)

2.4.5.36 Answer 15

False
Explanation: XSL is made up of three languages: XSLT, XPath, and XSL-FO. Goldberg page xiv
Back to Question 15 (p. 26)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

38 CHAPTER 2. ITSE1356

2.4.5.37 Answer 14

True
Explanation: Goldberg page xiv
Back to Question 14 (p. 25)

2.4.5.38 Answer 13

False
Explanation: Because there are no prede�ned tags, a browser cannot know how to display an XML

document according to the author's wishes. It's your job as the author of the document to specify how the
document should be displayed. Goldberg page xiv

Back to Question 13 (p. 25)

2.4.5.39 Answer 12

True
Explanation: Goldberg page xiv
Back to Question 12 (p. 25)

2.4.5.40 Answer 11

False
Explanation: XML is a non-proprietary speci�cation that is free to anyone who wishes to use it. Goldberg

page xiii
Back to Question 11 (p. 25)

2.4.5.41 Answer 10

False
Explanation: An XML document is a well-structured text �le that is considered to be human-readable.

Goldberg page xiii
Back to Question 10 (p. 25)

2.4.5.42 Answer 9

True
Explanation: Goldberg page xiii
Back to Question 9 (p. 25)

2.4.5.43 Answer 8

False
Explanation: XML is a language for storing and carrying information while HTML is a language for

displaying information. Goldberg page xiii
Back to Question 8 (p. 25)

2.4.5.44 Answer 7

False
Explanation: The XML speci�cation makes it possible for people to de�ne their own markup languages

so that so that they or others can create XML documents using that markup language. Goldberg page xii
Back to Question 7 (p. 25)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

39

2.4.5.45 Answer 6

True
Explanation: Goldberg page xii
Back to Question 6 (p. 25)

2.4.5.46 Answer 5

True
Explanation: Goldberg page xii
Back to Question 5 (p. 25)

2.4.5.47 Answer 4

False
Explanation: XML has no prede�ned tags. The person writing the XML can create whatever tags they

need provided that those tags adhere to the XML speci�cation. Goldberg page xii.
Back to Question 4 (p. 24)

2.4.5.48 Answer 3

True
Explanation: Goldberg page xii
Back to Question 3 (p. 24)

2.4.5.49 Answer 2

True
Explanation: Goldberg page xii
Back to Question 2 (p. 24)

2.4.5.50 Answer 1

False
Explanation: XML is an abbreviation for eXtensible Markup Language. Goldberg page xii.
Back to Question 1 (p. 24)

2.4.6 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Xml0100 Writing XML Review
• File: Xml0100WritingXmlReview.htm
• Published: 11/08/13
• Revised: 08/21/15

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

40 CHAPTER 2. ITSE1356

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

41

2.5 Xml0110 Transforming XML Review18

2.5.1 Table of Contents

• Preface (p. 41)
• Questions (p. 41)

· 1 (p. 41) , 2 (p. 41) , 3 (p. 41) , 4 (p. 41) , 5 (p. 42) , 6 (p. 42) , 7 (p. 42) , 8 (p. 42) , 9 (p. 42)
, 10 (p. 42) , 11 (p. 42) , 12 (p. 43) , 13 (p. 43) , 14 (p. 43) , 15 (p. 43) , 16 (p. 43) , 17 (p. 43)
, 18 (p. 43) , 19 (p. 44) , 20 (p. 44) , 21 (p. 44) , 22 (p. 44) , 23 (p. 44) , 24 (p. 44) , 25 (p. 44)
, 26 (p. 45) , 27 (p. 45) , 28 (p. 45) , 29 (p. 45) , 30 (p. 45)

• Listings (p. 45)
• Answers (p. 47)
• Miscellaneous (p. 50)

2.5.2 Preface

This material is published in support of the course identi�ed as ITSE 1356 - Extensible Markup Language
(XML) at Austin Community College in Austin, TX. As of the Spring 2014 semester, the textbook for this
course is XML: Visual QuickStart Guide, 2nd Edition. By Kevin Howard Goldberg.

This module contains review questions, answers, and explanations keyed to Chapter 2 of the textbook.
The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the

question to the answer and back again.

2.5.3 Questions

2.5.3.1 Question 1 .

True or False: Transforming an XML document means using XML to analyze its contents and then take
certain actions depending on what elements are found.

Answer 1 (p. 50)

2.5.3.2 Question 2

True or False: The transformation process starts with two documents:

1. the XML document containing the source data to be transformed
2. the XSLT stylesheet document describing the rules of the transformation

Answer 2 (p. 50)

2.5.3.3 Question 3

True or False: An XSLT transformation requires an XSLT processor.
Answer 3 (p. 50)

2.5.3.4 Question 4

True or False: An XML document must always include an xml-stylesheet processing instruction in order to
undergo an XSLT transformation.

Answer 4 (p. 50)

18This content is available online at <http://cnx.org/content/m47967/1.2/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

42 CHAPTER 2. ITSE1356

2.5.3.5 Question 5

True or False: Listing 1 below shows the proper syntax for an xml-stylesheet processing instruction.

Listing 1 . Question 5.

<?xml-stylesheet type="text/xsl" href="MyFile.xsl"?>

Table 2.23

Answer 5 (p. 50)

2.5.3.6 Question 6

True or False: A node tree is a hierarchical representation of the XSL document.
Answer 6 (p. 49)

2.5.3.7 Question 7

True or False: A node in a node tree is one individual piece of the XML document such as an element, an
attribute, or some text content.

Answer 7 (p. 49)

2.5.3.8 Question 8

True or False: An XSLT style sheet contains instructions on what should be done with the nodes in a node
tree in order to perform an XSLT transformation.

Answer 8 (p. 49)

2.5.3.9 Question 9

True or False: Each XSLT template contains three parts:

1. a label that identi�es the nodes to which the template applies
2. instructions about the transformation that should take place
3. identi�cation of the XML document to which the transformation is to be applied

Answer 9 (p. 49)

2.5.3.10 Question 10

True or False: XSLT templates cannot contain literal elements.
Answer 10 (p. 49)

2.5.3.11 Question 11

True or False: XSLT style sheets are text �les and are saved with an extension of .xml.
Answer 11 (p. 49)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

43

2.5.3.12 Question 12

True or False: XSLT uses the XPath language to identify nodes.
Answer 12 (p. 49)

2.5.3.13 Question 13

True or False: An XSLT style sheet is actually an XML document.
Answer 13 (p. 49)

2.5.3.14 Question 14

True or False: An XSLT style sheet does not require an XML declaration.
Answer 14 (p. 49)

2.5.3.15 Question 15

True or False: In an XSLT style sheet, the XML declaration should be followed by the W3C namespace for
style sheets.

Answer 15 (p. 48)

2.5.3.16 Question 16

True or False: In an XSLT style sheet, the W3C namespace for style sheets must be followed by the root
template.

Answer 16 (p. 48)

2.5.3.17 Question 17

True or False: Listing 2 below shows the proper format for the opening tag of the root template.

Listing 2 . Question 17.

<xsl:template match="/">

Table 2.24

Answer 17 (p. 48)

2.5.3.18 Question 18

True or False: The XSLT style sheet must contain an xsl:output processing instruction with the format
shown in Listing 3 below.

Listing 3 . Question 18.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

44 CHAPTER 2. ITSE1356

<xsl:output method="html"/>

Table 2.25

Answer 18 (p. 48)

2.5.3.19 Question 19

True or False: All XSLT style sheets must be well-formed.
Answer 19 (p. 48)

2.5.3.20 Question 20

True or False: An xsl:value-of element is used to access and output the contents of an XML document.
Answer 20 (p. 48)

2.5.3.21 Question 21

True or False: You can use select="." in an xsl:value-of element to output the contents of the
current node.

Answer 21 (p. 48)

2.5.3.22 Question 22

True or False: The xsl:value-of element will only act on one node, even if it matches many nodes.
Answer 22 (p. 48)

2.5.3.23 Question 23

True or False: The xsl:for-all element allows you to act on all matching nodes.
Answer 23 (p. 47)

2.5.3.24 Question 24

True or False: You can use an xsl:if element to process a node or set of nodes only a certain condition
is met.

Answer 24 (p. 47)

2.5.3.25 Question 25

True or False: The general syntax for processing nodes conditionally is shown in Listing 4 below where
expression speci�es a node set, a string, or a number.

Listing 4 . Question 25.

continued on next page

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

45

<xsl:if test="expression">
<!-- insert processing code here -->
</xsl:if>

Table 2.26

Answer 25 (p. 47)

2.5.3.26 Question 26

True or False: You can use an xsl:choose element to test for several di�erent conditions and react
appropriately for each condition.

Answer 26 (p. 47)

2.5.3.27 Question 27

True or False: An xsl:choose element must be nested inside an xsl:when element.
Answer 27 (p. 47)

2.5.3.28 Question 28

True or False: You can use an xsl:sort element contained in an xsl:for-each element to cause nodes
to be processed in a particular order.

Answer 28 (p. 47)

2.5.3.29 Question 29

True or False: You cannot nest an xsl:sort element inside another xsl:sort element.
Answer 29 (p. 47)

2.5.3.30 Question 30

True or False: An XSLT style sheet can contain only one template, which is the root template.
Answer 30 (p. 47)

2.5.4 Listings

• Listing 1 (p. 42) . Question 5
• Listing 2 (p. 43) . Question 17
• Listing 3 (p. 43) . Question 18
• Listing 4 (p. 44) . Question 25

What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

46 CHAPTER 2. ITSE1356

This image was also inserted for the purpose of inserting space between the questions and the answers.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

47

2.5.5 Answers

2.5.5.1 Answer 30

False
Explanation: Goldberg page 34
Back to Question 30 (p. 45)

2.5.5.2 Answer 29

False
Explanation: You can nest xsl:sort elements within other xsl:sort elements to sort on multiple

keys. Goldberg page 32
Back to Question 29 (p. 45)

2.5.5.3 Answer 28

True
Explanation: Goldberg page 32
Back to Question 28 (p. 45)

2.5.5.4 Answer 27

False
Explanation: The order is reversed. An xsl:when element must be nested inside an xsl:choose

element. Goldberg page 31
Back to Question 27 (p. 45)

2.5.5.5 Answer 26

True
Explanation: Goldberg page 31
Back to Question 26 (p. 45)

2.5.5.6 Answer 25

True
Explanation: Goldberg page 30
Back to Question 25 (p. 44)

2.5.5.7 Answer 24

True
Explanation: Goldberg page 30
Back to Question 24 (p. 44)

2.5.5.8 Answer 23

False
Explanation: The xsl:for-each element allows you to act on all matching nodes. Goldberg page 28
Back to Question 23 (p. 44)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

48 CHAPTER 2. ITSE1356

2.5.5.9 Answer 22

True
Explanation: Goldberg page 28
Back to Question 22 (p. 44)

2.5.5.10 Answer 21

True
Explanation: Goldberg page 27
Back to Question 21 (p. 44)

2.5.5.11 Answer 20

True
Explanation: Goldberg page 26
Back to Question 20 (p. 44)

2.5.5.12 Answer 19

True
Explanation: Goldberg page 25
Back to Question 19 (p. 44)

2.5.5.13 Answer 18

False
Explanation: The xsl:output processing instruction can set the output method to "html", "xml", or

"text". The xsl:output processing instruction can also be omitted, in which case the XSLT processor
will output XML by default. Goldberg page 24

Back to Question 18 (p. 43)

2.5.5.14 Answer 17

True
Explanation: Goldberg page 23
Back to Question 17 (p. 43)

2.5.5.15 Answer 16

False
Explanation: The XSLT processor doesn't care where the root template appears in your XSLT style

sheet. Goldberg page 23
Back to Question 16 (p. 43)

2.5.5.16 Answer 15

True
Explanation: Goldberg page 22
Back to Question 15 (p. 43)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

49

2.5.5.17 Answer 14

False
Explanation: An XSLT style sheet is actually an XML document and should begin with a standard XML

declaration. Goldberg page 22
Back to Question 14 (p. 43)

2.5.5.18 Answer 13

True
Explanation: Goldberg page 22
Back to Question 13 (p. 43)

2.5.5.19 Answer 12

True
Explanation: Goldberg page 21
Back to Question 12 (p. 43)

2.5.5.20 Answer 11

False
Explanation: XSLT style sheets are text �les and are saved with an .xsl extension. Goldberg page 21
Back to Question 11 (p. 42)

2.5.5.21 Answer 10

False
Explanation: XSLT templates can contain literal elements that should be output exactly as written.

Goldberg page 21
Back to Question 10 (p. 42)

2.5.5.22 Answer 9

False
Explanation: The third item in the list is not part of an XSLT template. Goldberg page 20
Back to Question 9 (p. 42)

2.5.5.23 Answer 8

True
Explanation: Goldberg page 20
Back to Question 8 (p. 42)

2.5.5.24 Answer 7

True
Explanation: Goldberg page 20
Back to Question 7 (p. 42)

2.5.5.25 Answer 6

False
Explanation: A node tree is a hierarchical representation of the XML document. Goldberg page 20
Back to Question 6 (p. 42)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

50 CHAPTER 2. ITSE1356

2.5.5.26 Answer 5

True
Explanation: Goldberg page 20
Back to Question 5 (p. 42)

2.5.5.27 Answer 4

False
Explanation: While an xml-stylesheet processing instruction is often required, with some XSLT pro-

cessors, you don't need an xml-stylesheet processing instruction in your XML document. Goldberg page
21

Back to Question 4 (p. 41)

2.5.5.28 Answer 3

True
Explanation: Goldberg page 20
Back to Question 3 (p. 41)

2.5.5.29 Answer 2

True
Explanation: Goldberg page 20
Back to Question 2 (p. 41)

2.5.5.30 Answer 1

False
Explanation: Transforming an XML document means using XSLT to analyze its contents and then

take certain actions depending on what elements are found. Goldberg page 19
Back to Question 1 (p. 41)

2.5.6 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Xml0110 Transforming XML Review
• File: Xmi0110TransformingXML.htm
• Published: 11/08/13
• Revised: 12/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

51

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

52 CHAPTER 2. ITSE1356

2.6 Xml0120 Validating XML Review19

2.6.1 Table of Contents

• Preface (p. 52)
• Questions (p. 52)

· 1 (p. 52) , 2 (p. 52) , 3 (p. 53) , 4 (p. 53) , 5 (p. 53) , 6 (p. 53) , 7 (p. 53) , 8 (p. 53) , 9 (p. 53)
, 10 (p. 53) , 11 (p. 53) , 12 (p. 54) , 13 (p. 54) , 14 (p. 54) , 15 (p. 54) , 16 (p. 54) , 17 (p. 54)
, 18 (p. 54) , 19 (p. 54) , 20 (p. 54) , 21 (p. 55) , 22 (p. 55) , 23 (p. 55) , 24 (p. 55) , 25 (p. 55)

• Answers (p. 56)
• Miscellaneous (p. 59)

2.6.2 Preface

This material is published in support of the course identi�ed as ITSE 1356 - Extensible Markup Language
(XML) at Austin Community College in Austin, TX. As of the Spring 2014 semester, the textbook for this
course is XML: Visual QuickStart Guide, 2nd Edition. By Kevin Howard Goldberg.

This module contains review questions, answers, and explanations keyed to the following chapters of the
textbook:

• Chapter 6 except for the following sections:

· Referencing Attributes with Unique Values
· Restricting Attributes to Valid XML Names

• Chapter 7 except for the following sections:

· Creating Entities for Unparsed Content
· Embedding Unparsed Content

• Chapter 8 except for the following sections:

· Naming a Public External DTD
· Declaring a Public External DTD
· Pros and Cons of DTDs

The questions and the answers are connected by hyperlinks to make it easy for you to navigate from the
question to the answer and back again.

2.6.3 Questions

2.6.3.1 Question 1 .

True or False: A schema for a custom markup language:

• identi�es its elements and their attributes
• declares which are required and which are not

Answer 1 (p. 59)

2.6.3.2 Question 2

True or False: Every XML document requires a schema.
Answer 2 (p. 59)

19This content is available online at <http://cnx.org/content/m47969/1.2/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

53

2.6.3.3 Question 3

True or False: You can compare an XML document to its corresponding schema to validate whether it
conforms to the rules speci�ed in the schema.

Answer 3 (p. 59)

2.6.3.4 Question 4

True or False: There are two principal systems for writing schemas: DTD and PDQ.
Answer 4 (p. 59)

2.6.3.5 Question 5

True or False: DTD is an abbreviation for Document to Document .
Answer 5 (p. 59)

2.6.3.6 Question 6

True or False: A DTD is a set of rules that de�nes a custom markup language in XML.
Answer 6 (p. 58)

2.6.3.7 Question 7

True or False: An XML document is considered valid for a particular custom markup language if it adheres
to the rules de�ned by the DTD for that custom markup language.

Answer 7 (p. 58)

2.6.3.8 Question 8

True or False: A DTD for a custom markup language will de�ne:

1. a list of elements
2. any child elements that each element can have
3. any attribute that each element can have
4. whether or not the speci�ed attributes are optional or required
5. whether the document is or is not sensitive to upper and lower case

Answer 8 (p. 58)

2.6.3.9 Question 9

True or False: A DTD is an XML document that begins with a standard XML declaration.
Answer 9 (p. 58)

2.6.3.10 Question 10

True or False: PCDATA is an abbreviation for politically correct data .
Answer 10 (p. 58)

2.6.3.11 Question 11

True or False: You can use a DTD to control the order in which elements must appear in a corresponding
XML document.

Answer 11 (p. 58)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

54 CHAPTER 2. ITSE1356

2.6.3.12 Question 12

True or False: A DTD cannot de�ne a sequence of child elements that must be contained in a parent element.
Answer 12 (p. 58)

2.6.3.13 Question 13

True or False: The three characters *, +, and ? are special symbols used in a DTD to de�ne how many
times a child element can appear within a parent element.

Answer 13 (p. 58)

2.6.3.14 Question 14

True or False: The vertical bar character, |, is used in a DTD to de�ne choices for the content of an element.
Answer 14 (p. 57)

2.6.3.15 Question 15

True or False: In a DTD, an attribute de�nition consists of four parts:

1. element name
2. attribute name
3. attribute type
4. optional status

Answer 15 (p. 57)

2.6.3.16 Question 16

True or False: Internal general entities de�ned in a DTD are shortcuts that represent text.
Answer 16 (p. 57)

2.6.3.17 Question 17

True or False: To use an internal general entity in an XML document, you write its name with an ampersand
as a pre�x and a colon as a su�x.

Answer 17 (p. 57)

2.6.3.18 Question 18

True or False: Character references look similar to entities but they are not entities and do not need to be
declared in the DTD.

Answer 18 (p. 57)

2.6.3.19 Question 19

True or False: An alternative to the internal general entity is an external general entity , which is saved
in a separate, external document.

Answer 19 (p. 57)

2.6.3.20 Question 20

True or False: Parameter entities are created for use in XSL documents.
Answer 20 (p. 57)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

55

2.6.3.21 Question 21

True or False: As with general entities, parameter entities can also be created in external �les.
Answer 21 (p. 57)

2.6.3.22 Question 22

True or False: You must declare a DTD in your XML document in order to use it.
Answer 22 (p. 56)

2.6.3.23 Question 23

True or False: The main purpose for creating a DTD is to ensure that a given XML document is constructed
in a speci�c way as de�ned by the DTD.

Answer 23 (p. 56)

2.6.3.24 Question 24

True or False: All DTDs must be written and saved as separate �les.
Answer 24 (p. 56)

2.6.3.25 Question 25

True or False: All XML parsers are required to have the ability to validate your XML against a DTD.
Answer 25 (p. 56)
What is the meaning of the following two images?
These images were inserted here simply to insert some space between the questions and the answers to

keep them from being visible on the screen at the same time.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

56 CHAPTER 2. ITSE1356

This image was also inserted for the purpose of inserting space between the questions and the answers.

2.6.4 Answers

2.6.4.1 Answer 25

False
Explanation: Goldberg page 107
Back to Question 25 (p. 55)

2.6.4.2 Answer 24

False
Explanation: DTDs can be written and saved as separate �les, or they can be written entirely inside an

XML document. Goldberg page 103
Back to Question 24 (p. 55)

2.6.4.3 Answer 23

True
Explanation: Goldberg page 103
Back to Question 23 (p. 55)

2.6.4.4 Answer 22

True
Explanation: Goldberg page 103

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

57

Back to Question 22 (p. 55)

2.6.4.5 Answer 21

True
Explanation: Goldberg page 101
Back to Question 21 (p. 55)

2.6.4.6 Answer 20

False
Explanation: Parameter entities are created for the DTD itself. Goldberg page 100
Back to Question 20 (p. 54)

2.6.4.7 Answer 19

True
Explanation: Goldberg page 94
Back to Question 19 (p. 54)

2.6.4.8 Answer 18

True
Explanation: Goldberg page 93
Back to Question 18 (p. 54)

2.6.4.9 Answer 17

False
Explanation: To use an internal general entity in an XML document, you write its name with an amper-

sand as a pre�x and a semicolon as a su�x.
Back to Question 17 (p. 54)

2.6.4.10 Answer 16

True
Explanation: Goldberg page 92
Back to Question 16 (p. 54)

2.6.4.11 Answer 15

True
Explanation: Goldberg page 85
Back to Question 15 (p. 54)

2.6.4.12 Answer 14

True
Explanation: Goldberg page 82
Back to Question 14 (p. 54)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

58 CHAPTER 2. ITSE1356

2.6.4.13 Answer 13

True
Explanation: Goldberg page 81
Back to Question 13 (p. 54)

2.6.4.14 Answer 12

False
Explanation: A DTD can de�ne a sequence of child elements that must be contained in a parent

element. Goldberg page 80
Back to Question 12 (p. 54)

2.6.4.15 Answer 11

True
Explanation: Goldberg page 79
Back to Question 11 (p. 53)

2.6.4.16 Answer 10

False
Explanation: Goldberg page 77
Back to Question 10 (p. 53)

2.6.4.17 Answer 9

False
Explanation: Goldberg page 76
Back to Question 9 (p. 53)

2.6.4.18 Answer 8

False
Explanation: A DTD for a custom markup language will only de�ne:

1. a list of elements
2. any child elements that each element can have
3. any attribute that each element can have
4. whether or not the speci�ed attributes are optional or required

The �fth item in the list given in the question is not part of a DTD.
Back to Question 8 (p. 53)

2.6.4.19 Answer 7

True
Explanation: Goldberg page 76
Back to Question 7 (p. 53)

2.6.4.20 Answer 6

True
Explanation: Goldberg page 76
Back to Question 6 (p. 53)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

59

2.6.4.21 Answer 5

False
Explanation: DTD is an abbreviation for Document Type De�nition .
Back to Question 5 (p. 53)

2.6.4.22 Answer 4

False
Explanation: There are two principal systems for writing schemas: DTD and XML Schema.
Back to Question 4 (p. 53)

2.6.4.23 Answer 3

True
Explanation: Goldberg page 75
Back to Question 3 (p. 53)

2.6.4.24 Answer 2

False
Explanation: Goldberg page 75
Back to Question 2 (p. 52)

2.6.4.25 Answer 1

True
Explanation: Goldberg page 75
Back to Question 1 (p. 52)

2.6.5 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Xml0120 Validating XML Review
• File: Xml0120ValidatingXML.htm
• Published: 11/10/13
• Revised: 12/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

60 CHAPTER 2. ITSE1356

-end-

2.7 Json0110: Preface to JSON20

2.7.1 Table of Contents

• Welcome (p. 60)
• ITSE1356 and JSON (p. 60)
• Miscellaneous (p. 60)

2.7.2 Welcome

Welcome to this set of introductory modules on JSON (JavaScript Object Notation) in my collection titled
Introduction to XML 21 .

2.7.3 ITSE1356 and JSON

ITSE1356
This is a portion of the material that I use to teach the course identi�ed as ITSE 1356 - Extensible

Markup Language (XML) at Austin Community College in Austin, TX.
As of the Spring 2014 semester, the textbook for this course is XML: Visual QuickStart Guide, 2nd

Edition , By Kevin Howard Goldberg.
JSON
JSON is a lightweight data-interchange format. It is emerging as a strong alternative to the use of XML

for data-interchange purposes.
An introductory section on JSON is scheduled to be introduced into the ITSE1356 course beginning in the

Fall 2014 semester. JSON material is not included in the Goldberg textbook mentioned above. Therefore,
these JSON modules will constitute the primary learning resource for the JSON section of the course.

2.7.4 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Json0110: Preface to JSON
• File: Json0110.htm
• Published: 02/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such

20This content is available online at <http://cnx.org/content/m48964/1.1/>.
21http://cnx.org/content/col11207/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

61

a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.8 Json0120: What is JSON?22

2.8.1 Table of Contents

• Preface (p. 61)
• Background information (p. 62)
• Online references (p. 62)
• What's next? (p. 63)
• Miscellaneous (p. 63)

2.8.2 Preface

This module is one in a collection of modules designed for teaching ITSE 1356 Introduction to XML
at Austin Community College in Austin, TX.

The title of this module is "What is JSON?" Given that there are dozens of tutorials and blogs on the
web that talk about JSON, you are probably wondering why we need another tutorial on JSON.

Specialized modules
The modules in this collection are very specialized. As indicated above, they are designed for teaching

a very speci�c XML course at the college where I teach. That course is predominately based on XML and
uses an XML textbook for the major portion of the course.

An alternative to XML
The online document titled Introducing JSON 23 begins as follows:

"JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for hu-
mans to read and write. It is easy for machines to parse and generate. It is based on a subset of the
JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON
is a text format that is completely language independent but uses conventions that are familiar
to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl,
Python, and many others. These properties make JSON an ideal data-interchange language."

Because JSON is an emerging alternative to XML, beginning in the Fall of 2014, the course will include an
introductory section on JSON. The modules in this collection and the online resources pointed to by these
modules will be the primary learning resource for the JSON portion of the course.

JSON could conceivably be used for a variety of purposes. However, for the purposes of this
course, it will be viewed solely as a data-interchange language and an alternative to the use for
XML for that same purpose.

22This content is available online at <http://cnx.org/content/m48968/1.1/>.
23http://www.json.org/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

62 CHAPTER 2. ITSE1356

2.8.3 Background information

JSON is an acronym for JavaScript Object Notation . Don't be fooled by the name however.
Although JSON is based on JavaScript object syntax, it is not intended to be JavaScript (at least not
exclusively JavaScript) .

A general data interchange format
Instead, similar to XML, JSON is a general purpose data interchange format that is supported by Java,

PHP, JavaScript, and other programming languages. JSON is a standard that describes how ordered lists
and unordered maps, strings boolean values and numbers can be represented as text in a string.

Just like XML, JSON provides a way to pass structured information between languages or between
di�erent computing environments using the same language.

Typical operation
Typically a data construct, (such as an object for example) , in one programming environment will

be transformed into a JSON string. That string will be transported to another programming environment
where it will be transformed into a data construct, (such as a hash table for example) , that is suitable for
use in that programming environment

A real-world analogy
Consider the following analogous situation. A young family has a large playscape for their children in

their back yard. They need to move to another house across town. In order to save money, they rent a small
truck and do the entire move themselves.

A playscape object
The playscape can be thought of as an object with certain properties such as swing and slide .
It is too large to �t into the truck so the adults disassemble it into a well-organized package of boards,

chains, bolts, nuts, etc. They are very careful to label each part and to create some drawings showing the
organization of the parts for use later.

No longer an object
In that disassembled state, it can no longer be thought of as an object with properties of swing and

slide . Instead, it is simply a well-organized and documented package of parts. The package of parts is
analogous to a JSON string. The playscape object has been transformed into a well-organized package of
parts.

Reassemble the parts
After the parts are transported to the new location, they are reassembled into an object with properties

of swing and slide .
This is what we do with JSON. We disassemble an object (or other data construct) into a JSON string:

a well-organized package of parts. Later on, and possibly in an entirely di�erent programming environment,
we reassemble the parts into a data construct suitable for use in the new programming environment.

Streamlined procedures
JavaScript, Java, PHP, and other programming languages provide streamlined procedures for transform-

ing a data construct into a JSON string and for transforming a JSON string into a suitable data construct.
As an example, the JSON.stringify method can be used to transform a JavaScript object into a JSON
string. The JSON.parse method can be used to transform a JSON string into a JavaScript object. Other
methods or functions are available to accomplish the same purposes in other languages.

2.8.4 Online references

There are many good online JSON references. Here are a few:

• Introducing JSON 24

• JSON: The Fat-Free Alternative to XML 25

24http://www.json.org/
25http://www.json.org/xml.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

63

• JSON with PHP 26

• JSON in Java 27

• Java API for JSON Processing: An Introduction to JSON 28

• JSON tutorial for beginners learn how to program part 1 JavaScript (video) 29

• JSON in JavaScript 30

• JSON: What It Is, How It Works, How to Use It 31

2.8.5 What's next?

The next module will present and explain some sample scripts that show how to use JSON with JavaScript.

2.8.6 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Json0120: What is JSON?
• File: Json0120.htm
• Published: 02/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

-end-

2.9 Json0130: JSON and JavaScript32

2.9.1 Table of Contents

• Preface (p. 64)

· Viewing tip (p. 64)

26http://www.tutorialspoint.com/json/json_php_example.htm
27http://json.org/java/
28http://www.oracle.com/technetwork/articles/java/json-1973242.html
29http://www.youtube.com/watch?v=wbB3lVyUvAM
30http://www.json.org/js.html
31http://www.copterlabs.com/blog/json-what-it-is-how-it-works-how-to-use-it/
32This content is available online at <http://cnx.org/content/m48966/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

64 CHAPTER 2. ITSE1356

* Figures (p. 64)
* Listings (p. 64)

• Preview (p. 65)
• General background information (p. 65)
• Discussion and sample code (p. 66)

· Json0130a.htm (p. 66)
· Json0130b.htm (p. 72)
· A word of caution (p. 74)
· Recognizing the di�erence (p. 77)

• Run the scripts (p. 79)
• Debugging JavaScript (p. 79)
• Miscellaneous (p. 79)
• Complete script listings (p. 80)

2.9.2 Preface

This module is one in a collection of modules designed for teaching ITSE 1356 Introduction to XML
at Austin Community College in Austin, TX.

As mentioned in an earlier module, because JSON is an emerging alternative to XML, beginning in the
Fall of 2014, the course will include an introductory section on JSON. The modules in this collection and
the online resources pointed to by these modules will be the primary learning resource for the JSON portion
of the course.

2.9.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and Listings while you are reading about them.

2.9.2.1.1 Figures

• Figure 1 (p. 67) . Screen output from Json0130a.htm.
• Figure 2 (p. 69) . Partial screen output from Json0130a.htm.
• Figure 3 (p. 71) . Partial screen output from Json0130a.htm.
• Figure 4 (p. 73) . Screen output from Json0130b,htm.
• Figure 5 (p. 76) . Possible terminology issue.
• Figure 6 (p. 78) . Output from the script.
• Figure 7 (p. 78) . Output from the script.

2.9.2.1.2 Listings

• Listing 1 (p. 67) . De�ne a JavaScript function.
• Listing 2 (p. 68) . Create a JavaScript object.
• Listing 3 (p. 68) . Garbage out.
• Listing 4 (p. 68) . Display keys in object.
• Listing 5 (p. 69) . Display object's values.
• Listing 6 (p. 70) . Transform JavaScript object into a JSON string.
• Listing 7 (p. 70) . Unsuccessful attempt to access name and age.
• Listing 8 (p. 71) . Transform the JSON string into a JavaScript object.
• Listing 9 (p. 72) . Display keys in object.
• Listing 10 (p. 73) . Create a JavaScript object.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

65

• Listing 11 (p. 74) . Transform the object into a JSON string.
• Listing 12 (p. 74) . Transform the JSON string into a JavaScript object.
• Listing 13 (p. 75) . Possible terminology issue.
• Listing 14 (p. 77) . Comparison of object and string.
• Listing 15 (p. 78) . Transform them both.
• Listing 16 (p. 80) . Json0130a.htm.
• Listing 17 (p. 82) . Json0130b.htm.
• Listing 18 (p. 83) . Json0130d.htm

2.9.3 Preview

I will present and explain three JavaScript scripts in this module. Each script shows how to transform a
JavaScript object into a JSON string and how to transform the JSON string back into a JavaScript object.

The �rst script deals with a very simple JavaScript object. The second script deals with a slightly more
complex JavaScript object that encapsulates an array of JavaScript objects.

The third script illustrates how to tell the di�erence between a JavaScript object in object literal format
and a JSON string.

In addition to the three scripts described above, I will provide a word of caution regarding a possible
terminology issue on a major technical website using a script from that website as an example of the issue.

2.9.4 General background information

Prerequisite knowledge
In order to understand the material in this module, you will need a moderate understanding of HTML

and JavaScript programming.
As you learned in an earlier module, several di�erent programming languages including JavaScript, Java,

and PHP support JSON. I elected to use JavaScript in these modules because many of the students enrolled
in this course are also enrolled in the web development curriculum at Austin Community College. Those
students either already have, or shortly will have a requirement to learn HTML and JavaScript programming
for their other coursework.

If you already know HTML and you know how to program using JavaScript, you should continue with
this module. If not, you need to take a side trip and learn how to program in JavaScript before continuing.
Also, if you don't know HTML, you should learn that also.

There are hundreds of online tutorials available for learning HTML and JavaScript, some bet-
ter than others. For HTML, I recommend the free online Introduction to HTML tutorial at
http://www.codecademy.com/tracks/web 33 . For JavaScript, I recommend the free JavaScript tutorial
at http://www.codecademy.com/tracks/javascript 34 An average college student should be able to complete
either tutorial in about �fteen hours or less. Once you complete either or both tutorials, your knowledge of
HTML and JavaScript should be su�cient for an understanding of JSON.

Di�erences between a JSON string and a JavaScript object
The syntax of a JSON string looks a lot like the syntax of a JavaScript object in object literal

notation .

Compare the JSON string in the second line in Figure 2 (p. 69) with the object literal in the
second line in Listing 2 (p. 68) .

This can be confusing to those who don't recognize the di�erence between the two. I will explain some of
the di�erences in this module.

A JavaScript object is a type

33http://www.codecademy.com/tracks/web
34http://www.codecademy.com/tracks/javascript

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

66 CHAPTER 2. ITSE1356

A JavaScript object encapsulates data and methods and exhibits behavior. Despite the similarity of
appearance, a JSON string is simply a string of characters with a well-de�ned format. It is not a type and
it does not exhibit behavior.

At least it doesn't exhibit any behavior that is not expected of any other string.

Remember the playscape?
Harkening back to an earlier module, a JavaScript object is analogous to the playscape in the back

yard that has swing and slide properties. The playscape can "do something" that many children �nd
enjoyable.

A JSON string is analogous to the well-organized package of parts resulting from the disassembly of the
playscape. In its disassembled state, the JSON string does not have properties like swing and slide even
though all of the parts necessary to support those properties are in the package of parts. In that state, all
it can do is lay there and take up space. It is unlikely that children would �nd it to be enjoyable.

I will refer back to the playscape a few more times in this module.
Transform a JSON string into a JavaScript object
In order to do much in the way of signi�cant processing on the contents of a JSON string using JavaScript,

you �rst need to transform it into a JavaScript object. (You need to reassemble the playscape before the
children can play on it.)

If you are working in some other language, you need to transform it into a data structure that is
appropriate for that language.

There are di�erent ways to transform a JSON string into a JavaScript object, at least one of which has
security problems. (The eval function is said to have security problems.)

The JSON.parse method
The recommended 35 way to transform a JSON string into a JavaScript object is to call the JSON.parse

method passing the JSON string as a parameter.

The JSON.parse method is apparently supported by most if not all modern browsers.

The JSON.parse method returns the JavaScript object that corresponds to the JSON string. I will use
this method in the JavaScript scripts that I will explain later.

The JSON.stringify method
On the �ip side of the coin, if you need to disassemble that JavaScript playscape object into a well-

organized package of parts, you can do that by calling the JSON.stringify method passing the JavaScript
object as a parameter. The JSON.stringify method returns the JSON string that represents the object,
and amazingly does that even for very complex JavaScript objects.

However, the simple form of the JSON.stringify method that I will use in this module does not
preserve methods that may reside in the JavaScript object.

With that as an introduction, let's look at some code.

2.9.5 Discussion and sample code

2.9.5.1 Json0130a.htm

I will explain the three scripts using fragments of code. The �rst script that I will explain is shown in its
entirety in Listing 16 (p. 80) . If you open the �le named Json0130a.htm in Firefox v26 or a later version,
the text shown in Figure 1 (p. 67) should be displayed in the browser window.

35http://www.json.org/js.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

67

Figure 1 . Screen output from Json0130a.htm.

Create a JavaScript object.

Unsuccessful attempt to display object.

[object Object]

Display keys in object: name age method

Display values in object: Bill, 31, true

Transform JavaScript object into a JSON string.

Display JSON string {"name":"Bill","age":31}

Unsuccessful attempt to access name and age.

undefined, undefined

Transform the JSON string into a JavaScript object.

Display values in object: Bill, 31

Display keys in object: name age

Table 2.27

(Note that I manually inserted some blank lines in Figure 1 (p. 67) to make it easier on the eyes.)
I will refer back to the contents of Figure 1 (p. 67) as I explain the code fragments.
De�ne a JavaScript function
Listing 1 (p. 67) shows the beginning of the script and also shows the de�nition of a simple JavaScript

function that will be included as part of a JavaScript object. You will see shortly, however, that even though
this function is part of the object, it is discarded when the object is transformed into a JSON string using
the simple version of the JSON.stringify method. (More complicated versions of the JSON.stringify
method are available in some browsers.)

Listing 1 . De�ne a JavaScript function.

<body>
<script>

//Define a function

function aMethod(){return true;};

Table 2.28

There is nothing new or exciting about the code in Listing 1 (p. 67) . This is "plain vanilla" JavaScript
programming.

Create a JavaScript object
The code in Listing 2 (p. 68) creates a new JavaScript object containing two properties (name and age)

and a method using object literal notation .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

68 CHAPTER 2. ITSE1356

Listing 2 . Create a JavaScript object.

document.write("Create a JavaScript object.");

var obj01 = {name:"Bill",age:31,method:aMethod};

Table 2.29

Recall that there is at least one other way to create an object in JavaScript by using a constructor. I
elected this approach because this is the syntax that is most easily confused with the syntax of a JSON
string.

Explanatory output text
The �rst line of code in Listing 2 (p. 68) produces the �rst line of output text in Figure 1 (p. 67) .

Similar statements will be included at critical points in the script so that the output will be somewhat self
explanatory.

Garbage out
The code in Listing 3 (p. 68) was included to show that unlike in some other programming languages

such as Java, simply passing a JavaScript object to the document.write method does not produce a
meaningful output.

Listing 3 . Garbage out.

document.write(

"
Unsuccessful attempt to display object.");

document.write("
" + obj01);

Table 2.30

The code in Listing 3 (p. 68) produced the second and third lines of output text in Figure 1 (p. 67) .
Display keys in object
The code in Listing 4 (p. 68) displays the three keys in the object, producing the fourth line of text in

Figure 1 (p. 67) .

Listing 4 . Display keys in object.

document.write("
Display keys in object: ");

for (var key in obj01) {

if (obj01.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

Table 2.31

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

69

You may (or may not) need to refresh your memory of JavaScript programming to understand the code
in Listing 4 (p. 68) . In any event, so far all the code that we have seen is "plain vanilla" JavaScript code.

Display object's values
Let's see one more section of "plain vanilla" code before we get into the good stu�. Listing 5 (p. 69) uses

dot notation to display the values of the properties in the object producing the output on line 5 in Figure 1
(p. 67) .

Listing 5 . Display object's values.

document.write("
Display values in object: ");

document.write(obj01.name + ", "

+ obj01.age + ", " + obj01.method());

Table 2.32

Note that the value displayed for the key named method is the result of evaluating the method: true
.

Cleanup time
It's getting a little di�cult to �nd the referenced lines in Figure 1 (p. 67) . To make the output text a

little easier to �nd, Figure 2 (p. 69) contains the output text lines from Figure 1 (p. 67) that haven't been
discussed yet.

Figure 2 . Partial screen output from Json0130a.htm.

Transform JavaScript object into a JSON string.

Display JSON string {"name":"Bill","age":31}

Unsuccessful attempt to access name and age.

undefined, undefined

Transform the JSON string into a JavaScript object.

Display values in object: Bill, 31

Display keys in object: name age

Table 2.33

(Note that once again I manually inserted a blank line in Figure 2 (p. 69) to make it easier on the eyes.)
The good stu�
Finally, we are ready to see something new and interesting. The call to the JSON.stringify method in

Listing 6 (p. 70) transforms the JavaScript object that was created in Listing 2 (p. 68) into a JSON string
and produces the �rst two lines of output text in Figure 2 (p. 69) .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

70 CHAPTER 2. ITSE1356

Listing 6 . Transform JavaScript object into a JSON string.

document.write("
Transform JavaScript object " +

"into a JSON string.");

// Note that the method does not become part of the

// JSON string.

var jsonstring = JSON.stringify(obj01);

document.write(

"
Display JSON string " + jsonstring);

Table 2.34

The new JSON string is saved in the variable named jsonstring .
The method has been lost
First note that as indicated earlier, this simple version of the JSON.stringify method discards methods

belonging to the object when transforming it to a JSON string. Therefore, from this point forward in the
script, the method belonging to the original JavaScript object has been lost.

Note the similarity
Once again, note the similarity between the JSON string shown in the second line of Figure 2 (p. 69)

and the object literal version of the JavaScript object shown in Listing 2 (p. 68) .
Having discarded the method, the only di�erence between the two is that the keys in the JSON string

are enclosed in quotes while the keys in Listing 2 (p. 68) are not enclosed in quotes.

As I understand it, the keys in a JSON string must always be enclosed in quotes while quotes
are normally optional for keys in the object literal declaration of a JavaScript object. (Some
keys must be enclosed in quotes in the object literal syntax for a JavaScript object.)

Unsuccessful attempt to access name and age
However, even though the syntax is very similar, a JSON string is very di�erent from a JavaScript object.

A JavaScript object is a type having content and behavior. A JSON string is just a string of characters
having content but no behavior. This is illustrated by the code in Listing 7 (p. 70) , which is very similar
to the code in Listing 5 (p. 69) .

Listing 7 . Unsuccessful attempt to access name and age.

document.write("
Unsuccessful attempt to " +

"access name and age.");

document.write("
" + jsonstring.name + ", "

+ jsonstring.age)

Table 2.35

When dot notation was used to access the name and age properties of the object in Listing 5 (p.
69) , the values of those properties were returned and displayed on Line 5 in Figure 1 (p. 67) .

When a similar syntax was used in an attempt to access the values associated with name and age in
Listing 7 (p. 70) , the result was "unde�ned" as shown on the fourth line of Figure 2 (p. 69) . In other
words, a JSON string is just what it says; simply a string of characters.

The magic of a JSON string
To the extent that there may be magic, the magic of the JSON string is

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

71

• the way that the characters are organized to represent the object that was used to create the string,
and

• the ability to use the characters in that string to replicate the object at a later time and possibly in a
di�erent location and di�erent programming environment.

Cleanup time again
Let's create one more simpli�ed Figure showing the script output. Figure 3 (p. 71) shows the last three

lines of text from Figure 1 (p. 67) that haven't been discussed yet.

Figure 3 . Partial screen output from Json0130a.htm.

Transform the JSON string into a JavaScript object.

Display values in object: Bill, 31

Display keys in object: name age

Table 2.36

Transform the JSON string into a JavaScript object
The �rst two lines of text in Figure 3 (p. 71) were produced by the code in Listing 8 (p. 71) .

Listing 8 . Transform the JSON string into a JavaScript object.

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = JSON.parse(jsonstring);

document.write("
Display values in object: ");

document.write(obj02.name + ", " + obj02.age);

Table 2.37

Let's pretend
For simplicity, I combined the disassembly and the reassembly of the object into a single script. Let's

pretend, however, that the code discussed down to this point resides on Computer-A and the remaining code
resides on Computer-B at a di�erent location. Pretend that the JSON string created in Listing 6 (p. 70)
has been transported from Computer-A to Computer-B. Now its time for the code in Computer-B to use
that JSON string to replicate the original object.

Transform the JSON string into a JavaScript object
The code in Listing 8 (p. 71) calls the JSON.parse method passing the JSON string as a parameter

to create a replica of the original JavaScript object that was created on Computer-A.
The JSON.parse method uses the JSON string to reassemble and return an object that is a replica

of the original object that was created in Listing 2 (p. 68) (minus the method property, which was lost in
the creation of the JSON string in Listing 6 (p. 70)) .

Then Listing 8 (p. 71) uses code similar to that shown in Listing 5 (p. 69) to access and display the
values of the remaining two properties of the object as shown by the second line in Figure 3 (p. 71) .

Finally, the code in Listing 9 (p. 72) uses code similar to that shown earlier in Listing 4 (p. 68) to display
the keys in the new object. The result is shown in the last line in Figure 3 (p. 71) where the keys are name
and age with the method key missing.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

72 CHAPTER 2. ITSE1356

Listing 9 . Display keys in object.

document.write("
Display keys in object: ");;

// Note that it does not contain the method from the

// original JavaScript object.

for (var key in obj02) {

if (obj02.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

</script>
</body>

Table 2.38

Listing 9 (p. 72) also signals the end of the script.

2.9.5.2 Json0130b.htm

Listing 17 (p. 82) presents a similar but slightly more complicated script than the one discussed earlier. As
before, I will discuss the code in fragments.

Output from the script
Figure 4 (p. 73) shows the screen output produced by opening this �le in Firefox v26 or later.
Once again, I manually inserted some blank lines to make it easier on the eyes.

Figure 4 . Screen output from Json0130b,htm.

Create a JavaScript object involving array data.

Display values in object.

Bill:31

Jill:40

Transform the object into a JSON string.

Display JSON string.

{"friends":[{"name":"Bill","age":31},{"name":"Jill","age":40}]}

Transform the JSON string into a JavaScript object.

Display values in object.

Bill:31

Jill:40

continued on next page

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

73

Table 2.39

Create a JavaScript object
Listing 10 (p. 73) shows the creation of a JavaScript object and the display of the property values

contained in that object.

Listing 10 . Create a JavaScript object.

<body>
<script>

document.write("Create a JavaScript object " +

"involving array data.");

var obj01 = {friends:[

{name:"Bill",age:31},{name:"Jill",age:40}]};

document.write("
Display values in object.");

document.write("
" + obj01.friends[0].name +

":" + obj01.friends[0].age);

document.write("
" + obj01.friends[1].name +

":" + obj01.friends[1].age);

Table 2.40

One property is an array
This JavaScript object contains a property with a key named friends . The value of the friends property

is a JavaScript array containing two JavaScript objects. Therefore, Listing 10 (p. 73) uses square bracket
([]) notation to access and display the values in the objects that are elements of the array.

The code in Listing 10 (p. 73) produces the �rst four lines of output text in Figure 4 (p. 73) .
Transform the object into a JSON string
Listing 11 (p. 74) transforms the JavaScript object into a JSON string and displays the string.

Listing 11 . Transform the object into a JSON string.

document.write(

"
Transform the object into a JSON string.");

var jsontext = JSON.stringify(obj01);

document.write("
Display JSON string.");

document.write("
" + jsontext);

Table 2.41

This produces the three lines of output text in the group near the center of Figure 4 (p. 73) . Note the
similarity of the string shown in Figure 4 (p. 73) and the object literal code used to create the JavaScript
object in Listing 10 (p. 73) .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

74 CHAPTER 2. ITSE1356

At the risk of becoming boring, I will state once again that even though they may look alike, a
JSON string is di�erent from a JavaScript object. A JavaScript object typically has properties
and behavior. A JSON string is simply a package of characters and has no properties or behavior
other than those that may typically be ascribed to any string of characters.

Transform the JSON string into a JavaScript object
Finally, Listing 12 (p. 74) uses the JSON.parse method to transform the JSON string into a JavaScript

object and displays the values of the new object's properties. The object named obj02 is a replica of the
original object named obj01 that was created in Listing 10 (p. 73) .

Listing 12 . Transform the JSON string into a JavaScript object.

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = JSON.parse(jsontext);

document.write("
Display values in object.");

document.write("
" + obj02.friends[0].name

+ ":" + obj02.friends[0].age);

document.write("
" + obj02.friends[1].name

+ ":" + obj02.friends[1].age);

</script>
</body>

Table 2.42

The code in Listing 12 (p. 74) produces the bottom four lines of output text shown in Figure 4 (p. 73) .
Listing 12 (p. 74) also signals the end of the script.

2.9.5.3 A word of caution

At this point, I want to alert you to a possible terminology issue that you may encounter while searching
the web for information about JSON.

Possible terminology issue
Listing 13 (p. 75) contains a scaled down version of code that I copied from

http://www.w3schools.com/json/json_intro.asp 36 plus some code that I added myself.

36http://www.w3schools.com/json/json_intro.asp

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

75

Listing 13 . Possible terminology issue.

<!DOCTYPE html>
<html>
<body>
<h2>JSON Object Creation in JavaScript</h2>

<p>
Name:

Age:

</p>

<script>
var JSONObject= {

"name":"John Johnson",

"age":33};

document.getElementById("jname").innerHTML=JSONObject.name

document.getElementById("jage").innerHTML=JSONObject.age

document.write("Code added by Baldwin");

var JSONstring = JSON.stringify(JSONObject);

document.write("
 " + JSONstring);

var JSObject = JSON.parse(JSONstring);

document.write("
 " + JSObject.name + ", " + JSObject.age);

</script>

</body>
</html>

Table 2.43

The variable named JSONObject
Despite the name, the variable named JSONObject in Listing 13 (p. 75) appears to be an ordinary

JavaScript object in object literal format that has nothing to do with JSON.

The keys "name" and "age" in Listing 13 (p. 75) are enclosed in double quotes, which may
be a little unusual, but is perfectly valid for a JavaScript object. Although JSON keys must be
enclosed in quotes, enclosing JavaScript object keys in quotes does not produce a JSON string.

A terminology issue?
This is probably just a terminology issue. However, I don't see anything in the original script at

w3schools.com 37 that illustrates anything about JSON.
Stringify the JavaScript object
To illustrate that JSONObject is a JavaScript object (and is not JSON text) , the code in Listing

13 (p. 75) converts it into a JSON string by passing it to the JSON.stringify method.
After discussing the parsing of JSON text, the document at JSON in JavaScript 38 states

37http://www.w3schools.com/json/json_intro.asp
38http://www.json.org/js.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

76 CHAPTER 2. ITSE1356

"A JSON stringi�er goes in the opposite direction, converting JavaScript data structures into
JSON text."

The fact that JSON.stringify will accept JSONObject as an incoming parameter and return a JSON
string seems to con�rm that JSONObject is a JavaScript data structure (an object) .

Parse the JSON string
After displaying the JSON string, Listing 13 (p. 75) calls the JSON.parse method, passing the JSON

string as a parameter, to replicate the original JavaScript object and displays the values of the object's
properties. The screen output is shown in Figure 5 (p. 76) .

Figure 5 . Possible terminology issue.

Be wary of "JSON objects"
So, the word of caution is, be wary of material that refers to JSON objects. According to Introducing

JSON 39

"JSON is a text format that is completely language independent but uses conventions that are
familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others. These properties make JSON an ideal data-interchange lan-
guage."

The reason that JSON is a text format is probably the same reason that XML is a text format. The use
of a text format (as opposed to some proprietary object format) ensures that the format can be read by
almost any programming language running on almost any computer.

39http://www.json.org/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

77

2.9.5.4 Recognizing the di�erence

Given all of the above, you might be wondering how to distinguish between a JavaScript object in object
literal format and a JSON string. It all comes down to syntax.

Listing 18 (p. 83) presents a simple script that illustrates the di�erence. Once again, I will discuss it in
fragments.

A comparison
Listing 14 (p. 77) shows a JavaScript object in object literal format and a JSON string on two

consecutive lines to make them easy to compare.

Listing 14 . Comparison of object and string.

<body>
<script>

var jScrObj01 = {"name":"John","age":33};

var jSonStr01 = '{"name":"Bill","age":33}';

document.write("
1. " + jScrObj01.name);

document.write("
2. " + jSonStr01.name);

document.write("
3. " + jScrObj01);

document.write("
4. " + jSonStr01);

Table 2.44

The variable named jScrObj01 is (or contains) a JavaScript object.
The variable named jSonStr01 is (or contains) a JSON string.
The only di�erence between the two is the pair of single quotes that surrounds the expression on the

right side of the assignment operator for jSonStr01 .

The keys in the JavaScript object are surrounded by double quotes. This is optional. If those
quotes were removed, the JavaScript object would still be a JavaScript object.

Output from the script
After creating the JavaScript object and the JSON string, the code in Listing 14 (p. 77) executes four

write statements to display information about the object and the string. The results are shown in Figure
6 (p. 78) .

Figure 6 . Output from the script.

1. John

2. undefined

3. [object Object]

4. {"name":"Bill","age":33}

Table 2.45

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

78 CHAPTER 2. ITSE1356

Without getting into the details, the output in Figure 6 (p. 78) con�rms that jScrObj01 contains a
JavaScript object and jSonStr01 contains a JSON string.

Transform them both
The code in Listing 15 (p. 78)

• calls the JSON.parse method to transform the JSON string into a JavaScript object, and
• calls the JSON.stringify method to transform the JavaScript object into a JSON string.

Listing 15 . Transform them both.

var jScrObj02 = JSON.parse(jSonStr01);

var jSonStr02 = JSON.stringify(jScrObj01);

document.write("
5. " + jScrObj02.name);

document.write("
6. " + jSonStr02.name);

document.write("
7. " + jScrObj02);

document.write("
8. " + jSonStr02);

</script>

</body>

Table 2.46

Output from the script
After that, the code in Listing 15 (p. 78) executes four write statements to display information about

the new object and the new string. The results are shown in Figure 7 (p. 78) .

Figure 7 . Output from the script.

5. Bill

6. undefined

7. [object Object]

8. {"name":"John","age":33}

continued on next page

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

79

Table 2.47

Once again, without getting into the details, the output in Figure 7 (p. 78) con�rms that jScrObj02
is a JavaScript object and jSonStr02 is a JSON string.

2.9.6 Run the scripts

I encourage you to copy the code from Listing 16 (p. 80) , Listing 17 (p. 82) , Listing 18 (p. 83) , and
Listing 13 (p. 75) . Load the code into your favorite browser and observe the output. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

2.9.7 Debugging JavaScript

Finding and correcting errors in your JavaScript code can be di�cult. Sometimes when your JavaScript
isn't working properly, opening the Firefox Web Console will provide useful diagnostic information about
the error.

To open the Web Console in Firefox version 26,

• Select Tools
• Hover on Web Developer
• Select Web Console

2.9.8 Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

• Module name: Json0130: JSON and JavaScript
• File: Json0130.htm
• Published: 02/02/14
• Revised: 02/08/16

Disclaimers: Financial : Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

80 CHAPTER 2. ITSE1356

2.9.9 Complete script listings

Listing 16 . Json0130a.htm.

<!--01/26/14
Illustrates the difference between the syntax of a

JavaScript object and a JSON string that looks a lot like

a JavaScript object.

Must parse the JSON string to turn it into a JavaScript

object before processing it using JavaScript.

Uses JSON.stringify to produce a JSON string from a

JavaScript object.

Uses JSON.parse to produce a JavaScript object from

a JSON string.-->

<!DOCTYPE html>
<html>

<head>
<title>ParseJSON01</title>

</head>
<body>

<script>
//Define a function

function aMethod(){return true;};

document.write("Create a JavaScript object.");

var obj01 = {name:"Bill",age:31,method:aMethod};

document.write(

"
Unsuccessful attempt to display object.");

document.write("
" + obj01);

document.write("
Display keys in object: ");

for (var key in obj01) {

if (obj01.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

document.write("
Display values in object: ");

document.write(obj01.name + ", "

+ obj01.age + ", " + obj01.method());

document.write("
Transform JavaScript object " +

"into a JSON string.");

// Note that the method does not become part of the

// JSON string.

var jsonstring = JSON.stringify(obj01);

document.write(

"
Display JSON string " + jsonstring);

document.write("
Unsuccessful attempt to " +

"access name and age.");

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

81

document.write("
" + jsonstring.name + ", "

+ jsonstring.age);

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = JSON.parse(jsonstring);

document.write("
Display values in object: ");

document.write(obj02.name + ", " + obj02.age);

document.write("
Display keys in object: ");;

// Note that it does not contain the method from the

// original JavaScript object.

for (var key in obj02) {

if (obj02.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

</script>
</body>

</html>

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

82 CHAPTER 2. ITSE1356

Listing 17 . Json0130b.htm.

<!--01/26/14---//
Illustrates the difference between the syntax of a

JavaScript object a JSON string that looks a lot like a

JavaScript object where each involves array data. Must

parse the JSON text to turn it into a JavaScript object

before processing it using JavaScript. -->
<!DOCTYPE html>
<html>

<head>
<title>ParseJSON02</title>

</head>
<body>

<script>
document.write("Create a JavaScript object " +

"involving array data.");

var obj01 = {friends:[

{name:"Bill",age:31},{name:"Jill",age:40}]};

document.write("
Display values in object.");

document.write("
" + obj01.friends[0].name +

":" + obj01.friends[0].age);

document.write("
" + obj01.friends[1].name +

":" + obj01.friends[1].age);

document.write(

"
Transform the object into a JSON string.");

var jsontext = JSON.stringify(obj01);

document.write("
Display JSON string.");

document.write("
" + jsontext);

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = JSON.parse(jsontext);

document.write("
Display values in object.");

document.write("
" + obj02.friends[0].name

+ ":" + obj02.friends[0].age);

document.write("
" + obj02.friends[1].name

+ ":" + obj02.friends[1].age);

</script>
</body>

</html>

Table 2.48

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

83

Listing 18 . Json0130d.htm.

<!DOCTYPE html>
<html>
<body>

<script>
var jScrObj01 = {"name":"John","age":33};

var jSonStr01 = '{"name":"Bill","age":33}';

document.write("
1. " + jScrObj01.name);

document.write("
2. " + jSonStr01.name);

document.write("
3. " + jScrObj01);

document.write("
4. " + jSonStr01);

var jScrObj02 = JSON.parse(jSonStr01);

var jSonStr02 = JSON.stringify(jScrObj01);

document.write("
5. " + jScrObj02.name);

document.write("
6. " + jSonStr02.name);

document.write("
7. " + jScrObj02);

document.write("
8. " + jSonStr02);

</script>

</body>
</html>

Table 2.49

-end-

2.10 Json0140-Calling External JavaScript Functions40

2.10.1 Table of Contents

• Preface (p. 84)

· Viewing tip (p. 84)

* Figures (p. 84)
* Listings (p. 84)

• Preview (p. 84)
• Discussion and sample code (p. 84)

· Program output (p. 85)
· Will explain in fragments (p. 85)
· Call a function named objToStr (p. 86)

40This content is available online at <http://cnx.org/content/m51864/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

84 CHAPTER 2. ITSE1356

· The function named objToStr (p. 87)
· Call a function named strToObj (p. 87)

• Run the program (p. 87)
• Miscellaneous (p. 87)
• Complete program listings (p. 88)

2.10.2 Preface

This module is one in a collection of modules designed for teaching ITSE 1356 Introduction to XML
at Austin Community College in Austin, TX.

2.10.2.1 Viewing tip

I recommend that you open another copy of this module in a separate browser window and use the following
links to easily �nd and view the Figures and the Listings while you are reading about them.

2.10.2.1.1 Figures

• Figure 1 (p. 85) . Program output.

2.10.2.1.2 Listings

• Listing 1 (p. 86) . Beginning of the �le named Asg.htm.
• Listing 2 (p. 86) . Call a function named objToStr.
• Listing 3 (p. 87) . Call a function named strToObj.
• Listing 4 (p. 89) . The HTML �le named Asg.htm.
• Listing 5 (p. 90) . The JavaScript �le named Asg.js.

2.10.3 Preview

Previous modules in this collection have shown you how to transform JavaScript objects into JSON strings,
and how to transform JSON strings into JavaScript objects. Those program placed all of the JavaScript
code in an HTML �le. Sometimes you will need to break some of the JavaScript code out into a separate
�le. You will learn how to do that in this module.

2.10.4 Discussion and sample code

This module will show you how to create an HTML �le (Asg.htm) and a separate JavaScript �le (
Asg.js) containing functions that are called by JavaScript code in the HTML �le. The JavaScript �le
will contain two functions:

• A function named objToStr receives a JavaScript object as an incoming parameter and returns a
JSON string that represents the object.

• A function named strToObj receives a JSON string as an incoming parameter and returns a
JavaScript object that represents the string.

A complete listing of the HTML �le is provided in Listing 4 (p. 89) near the end of the lesson. A complete
listing of the JavaScript �le is provided in Listing 5 (p. 90) near the end of the lesson.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

85

2.10.4.1 Program output

Figure 1 (p. 85) shows the text that appears in a browser window when the �les named Asg.htm and
Asg.js are stored in the same folder and the �le named Asg.htm is opened in a browser. Keep this �gure
handy so that you can refer to it while viewing the code.

Figure 1 . Program output.

Display keys in object: name age

Display values in object: Bill, 31

Transform JavaScript object into a JSON string.

In objToStr

Display JSON string {"name":"Bill","age":31}

Transform the JSON string into a JavaScript object.

In strToObj

Display values in object: Bill, 31

Display keys in object: name age

Table 2.50

2.10.4.2 Will explain in fragments

As is often the case, I will explain this program in fragments. The beginning of the �le named Asg.htm
is shown in Listing 1 (p. 86) .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

86 CHAPTER 2. ITSE1356

Listing 1 . Beginning of the �le named Asg.htm.

<!DOCTYPE html>
<html>

<head>
<title>ITSE 1356</title>

<script type='text/javascript' src='Asg.js'></script>
</head>
<body>

<script>
var obj01 = {name:"Bill",age:31};

document.write("
Display keys in object: ");

for (var key in obj01) {

if (obj01.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

document.write("
Display values in object: ");

document.write(obj01.name + ", " + obj01.age);

Table 2.51

The only new code in Listing 1 (p. 86) is the �fth line, which declares that a �le named Asg.js contains
JavaScript code that may be called by JavaScript code in the HTML �le. Otherwise, the code in Listing 1
(p. 86) simply creates a JavaScript object and displays its contents. You have seen code like that before.

2.10.4.3 Call a function named objToStr

The second statement in Listing 2 (p. 86) is new to this module. This statement calls a JavaScript function
named objToStr passing the JavaScript object as a parameter.

Listing 2 . Call a function named objToStr.

document.write("
Transform JavaScript object " +

"into a JSON string.");

var jsonstring = objToStr(obj01);

Table 2.52

When the JavaScript interpreter encounters this statement, it searches the current �le (Asg.htm)
for a function having that name. When it doesn't �nd the function in the current �le, it searches the �le
named Asg.js , which was declared in Listing 1 (p. 86) . It �nds the function in that �le (see Listing 5
(p. 90)) and executes it.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

87

2.10.4.4 The function named objToStr

The code in the function named objToStr is straightforward. You have seen code like this before. After
announcing that it has been called, the objToStr function calls the JSON.stringify method to create
and return a JSON string based on the contents of the JavaScript object.

2.10.4.5 Call a function named strToObj

Returning to the code in the �le named Asg.htm , the third statement in Listing 3 (p. 87) calls a function
named strToObj passing the JSON string as a parameter.

Listing 3 . Call a function named strToObj.

document.write(

"
Display JSON string " + jsonstring);

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = strToObj(jsonstring);

Table 2.53

The function named strToObj is also shown in Listing 5 (p. 90) . The code in this function is also
straightforward and you have seen code like this before. The strToObj function calls the JSON.parse
method to create and return a JavaScript object based on the contents of the JSON string.

Following that, the code in the �le named Asg.htm simply displays the contents of the JavaScript
object. You can view that code in Listing 4 (p. 89) .

2.10.5 Run the program

I encourage you to copy the code from Listing 4 (p. 89) and Listing 5 (p. 90) and execute it by opening the
HTML �le in your browser. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

2.10.6 Miscellaneous

This section contains a variety of miscellaneous information.

note: Housekeeping material

• Module name: Json0140-External JavaScript Functions
• File: Json0140.htm
• Published: 11/02/14

note: Disclaimers: Financial : Although the Connexions site makes it possible for you to
download a PDF �le for this module at no charge, and also makes it possible for you to purchase a
pre-printed version of the PDF �le, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no �nancial compensation from the Connexions website even
if you purchase the PDF version of the module.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

88 CHAPTER 2. ITSE1356

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle
books, and placed them for sale on Amazon.com showing me as the author. I neither receive
compensation for those sales nor do I know who does receive compensation. If you purchase such
a book, please be aware that it is a copy of a module that is freely available on cnx.org and that it
was made and published without my prior knowledge.

A�liation : I am a professor of Computer Information Technology at Austin Community College
in Austin, TX.

2.10.7 Complete program listings

Complete listings of the HTML �le and the JavaScript �le are shown below.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

89

Listing 4 . The HTML �le named Asg.htm.

<!DOCTYPE html>
<html>

<head>
<title>ITSE 1356</title>

<script type='text/javascript' src='Asg.js'></script>
</head>
<body>

<script>
var obj01 = {name:"Bill",age:31};

document.write("
Display keys in object: ");

for (var key in obj01) {

if (obj01.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

document.write("
Display values in object: ");

document.write(obj01.name + ", " + obj01.age);

document.write("
Transform JavaScript object " +

"into a JSON string.");

var jsonstring = objToStr(obj01);

document.write(

"
Display JSON string " + jsonstring);

document.write("
Transform the JSON string " +

"into a JavaScript object.");

var obj02 = strToObj(jsonstring);

document.write("
Display values in object: ");

document.write(obj02.name + ", " + obj02.age);

document.write("
Display keys in object: ");;

for (var key in obj02) {

if (obj02.hasOwnProperty(key)) {

document.write(key + " ");

}//end if

}//end for loop

</script>
</body>
</html>

Table 2.54

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

90 CHAPTER 2. ITSE1356

Listing 5 . The JavaScript �le named Asg.js.

function objToStr(obj){

document.write("

In objToStr
");
var str = JSON.stringify(obj);

return str;

}

function strToObj(str){

document.write("

In strToObj
");
var obj = JSON.parse(str);

return obj;

}

Table 2.55

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

Chapter 3

Flex

3.1 XML - Namespaces - Flex 31

note: Click Namespace01 2 to run this Flex program. (Click the "Back" button in your browser
to return to this page.)

3.1.1 Table of Contents

• Preface (p. 91)

· General (p. 91)
· Viewing tip (p. 91)

* Figures (p. 92)
* Listings (p. 92)

· Supplemental material (p. 92)

• General background information (p. 92)
• Preview (p. 92)
• Discussion and sample code (p. 95)
• Resources (p. 101)
• Miscellaneous (p. 101)

3.1.2 Preface

3.1.2.1 General

This tutorial lesson is part of a series dedicated to programming with Adobe Flex.
Flex is a programming language based on XML. Therefore, in order to program with Flex, you must �rst

understand XML. The lessons in this XML series provide a brief introduction to XML.

3.1.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

1This content is available online at <http://cnx.org/content/m34600/1.1/>.
2http://cnx.org/content/m34600/latest/Namespace01.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

91

92 CHAPTER 3. FLEX

3.1.2.2.1 Figures

• Figure 1 (p. 93) . The directory tree for the project named Namespace01.
• Figure 2 (p. 94) . Program output at startup.
• Figure 3 (p. 97) . Screen output for upgraded Flex project.

3.1.2.2.2 Listings

• Listing 1 (p. 95) . Skeleton MXML code for a new Flex project.
• Listing 2 (p. 97) . Upgraded Flex project code.
• Listing 3 (p. 99) . Contents of the �le named Label.mxml.
• Listing 4 (p. 99) . Contents of the �le named Button.mxml
• Listing 5 (p. 100) . Contents of the �le named NameSpace01.mxml.

3.1.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 3 .

3.1.3 General background information

XML namespaces make it possible to combine two or more XML documents into a single XML document
and to deal with problems that arise when the same name is used for an element in two or more of the XML
documents.

3.1.4 Preview

The XML namespace topic is very broad. I won't attempt to cover the topic of namespaces in this lesson.
Instead, I will illustrate and explain a somewhat restricted use of namespaces by explaining a Flex project
that combines three XML documents with con�icting element names.

Before getting into the detailed code, I will show you a couple of images that I will be referring back to
later.

The project �le structure
When you create a Flex project, you create a directory tree on the disk to contain the �les and folders

that make up the project. The tree is rooted in a folder that has the same name as the name that you give
to the project. In this lesson, I will explain a Flex project named Namespace01.

Figure 1 shows the directory tree for this project. Figure 1 is a snapshot of the Flex Builder 3 Navigator
panel.

3http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

93

The directory tree for the project named Namespace01.

Figure 3.1: The directory tree for the project named Namespace01.

Lots of folders and �les
The directory tree contains a relatively large number of folders and �les. Fortunately, most of the folders

and �les are generated automatically by Flex Builder 3. As Flex programmers, we are primarily interested
in the folders and �les that are children of the folder named src .

For this project I had to create the following �les and folders:

• The �le named Namespace01.mxml
• The folder named customComps
• The �le named Button.mxml
• The �le named Label.mxml

Create a graphical user interface (GUI)
If you continue in your study of Flex programming, you will learn that one of the most important uses of

Flex is to create a graphical user interface (GUI) to provide the user interface for programs that are written
in the ActionScript programming language.

While you may not be familiar with the jargon term GUI, I know that you are familiar with the use of
a GUI. The GUI is generally considered to consist of the buttons, menus, text �elds, etc. that you interact
with when you run a program on a modern desktop or laptop computer.

Two buttons, three labels, etc.
This project creates a GUI with two buttons and three labels in a VBox container with a red background

as shown in Figure 2.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

94 CHAPTER 3. FLEX

Program output at startup.

Figure 3.2: Program output at startup.

The buttons are not active
Nothing happens if you click the buttons in the GUI. The program isn't very interesting from an opera-

tional viewpoint. The thing that is interesting is that I purposely created name con�icts and resolved them
through the use of XML namespaces. I will explain how I did that.

Two standard components
The size of the red VBox container was set to exactly match the size needed to contain the four

components. The yellow label with the text Standard Label and the button labeled Standard Button
are standard Flex components. As you will see shortly, they are created by creating instances of the standard
Flex components named Label and Button .

A con�ict with the name Label
The yellow label with the text Custom Label and the cyan rectangle containing a label and a button

are both custom components. The yellow label in the middle was created by combining the XML �le named

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

95

Namespace01.mxml shown in Figure 1 with the �le named Label.mxml , which is also shown in
Figure 1. This created a name con�ict because the name of the �le, Label , is the same as the name of
the yellow label at the top of the red VBox .

A con�ict with the name Button
The cyan component containing the button and the label was created by combining the XML �le named

Namespace01.mxml shown in Figure 1 with the �le named Button.mxml , which is also shown in
Figure 1. This also created a name con�ict because the name of the �le, Button , is the same as the name
of the standard button.

Start with a simple project
Now that you have the big picture in mind, it's time to drill down a little deeper and take a look at the

three XML �les used in this project. However, I'm going to start out with a very simple project and work
my way up to the project that created the output shown in Figure 2.

3.1.5 Discussion and sample code

Two ways to create Flex projects
Flex projects can be created using nothing more than a text editor and a Flex software development kit

(SDK) that is freely available from the Adobe website. However, to make the development of Flex projects a
little easier, Adobe sells a product named Flex Builder 3 that includes the SDK along with a visual project
editor. The project that I will explain in this lesson was created using Flex Builder 3.

(Note that as of June 2010, the product named Flex Builder 3 has been replaced by a product
named Flash Builder 4 to accommodate the release of version 4 of Flex. I will be covering both
Flex 3 and Flex 4 in this series of lessons.)

Skeleton MXML code for a new Flex project
When you create a new Flex project in Flex Builder 3, a skeleton of the required MXML �le is created

for you. Listing 1 shows the contents of such a skeleton MXML �le.

Listing 3.1: Skeleton MXML code for a new Flex project.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">

</mx:Application>

(Listing 1 shows the skeleton code for a Flex 3 project. The skeleton code for a Flex 4 project
is somewhat more complicated.)

The XML declaration
The line of code that begins with the left angle bracket followed by ?xml is called the XML declaration

. It tells what version of XML is being used and also speci�es the encoding scheme for the characters in the
�le. An XML declaration should be included at the beginning of every XML document.

The root element
The line of text that begins with a left angle bracket and mx:Application is the start tag for the

root element in the XML document. (The root element is always named Application in a Flex
project.) At this point in the course, you should be able to identify the end tag for the Application
element.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

96 CHAPTER 3. FLEX

All XML documents have a root element. All other elements must be nested in the root element.
Attributes of the root element
The start tag for the root element in Listing 1 includes two attributes:

• xmlns:mx
• layout

The layout attribute
The layout attribute speci�es that components will be positioned on the computer screen using absolute

coordinates. As you will see later, this is not what I want for my project so I will delete this attribute.
The namespace (xmlns) attribute
The more interesting attribute is the one named xmlns . The term xmlns is the required name

for a namespace attribute. While it isn't necessary in general to include a namespace attribute in the root
element, when a namespace attribute is included in the root element, it becomes the default namespace for
the entire document.

Namespace is always required for a Flex project
It is always necessary to include the namespace attribute shown in Listing 1 in the main MXML document

for a Flex 3 project. That is why Flex Builder 3 includes it in the skeleton code for the project.

(Flash Builder 4 includes di�erent namespace attributes in the skeleton code for a Flex 4
project.)

To make a long story short, the inclusion of the default namespace attribute shown in Listing 1 means that
all elements with names that refer to components from the standard Flex 3 library of components must be
pre�xed with mx .

A viable Flex project
The code shown in Listing 1 is a viable Flex 3 project. You can compile it and run it. However, when

you do, you won't see any output other than a blank area with a default gray background in your browser
window. So far, the project doesn't contain any Flex components such as labels and buttons.

Screen output for upgraded Flex project
Now I am going to upgrade the project to add a VBox container with a red background to the

Application element, and then add a Label and a Button to the VBox container element. I will
also delete the layout attribute shown in Listing 1.

If you compile and run this project, you should see the output shown in Figure 3.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

97

Screen output for upgraded Flex project.

Figure 3.3: Screen output for upgraded Flex project.

The modi�ed MXML code
The modi�ed MXML code is shown in Listing 2.

Listing 3.2: Upgraded Flex project code.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml">

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

98 CHAPTER 3. FLEX

<!--Add a VBox container to the Application-->
<mx:VBox backgroundColor="#FF0000">

<!--Add a label and a button to the VBox-->
<mx:Label text="Label"/>
<mx:Button label="Button"/>

</mx:VBox>

</mx:Application>

Comments
The lines of text in Listing 2 that begin with the left angle bracket followed by !� are comments. The

comment includes everything from the beginning to the � followed by a right angle bracket. (You cannot
include � in a comment.)

You can include comments in an XML document to help explain the code, record the date, or for whatever
purpose a comment may be appropriate. Comments are ignored by the Flex compiler and have no e�ect on
the behavior of the program.

The Application element
The start and end tags for the Application element are the same as in Listing 1 except that I deleted

the layout attribute.
The VBox element
At this point, you should have no di�culty identifying the start and end tags for the VBox element.

Note that I included an attribute for the VBox element to cause the backgroundColor for the VBox
to be red. (I will leave it as an exercise for the student to research and determine how "#FF0000" represents
the color red.)

The VBox element
You should also note that the name of the VBox element is pre�xed with mx , which is the default

namespace for all Flex 3 components.
Finally, you should note that the VBox element is nested inside the Application element. We say that

in this case, VBox is a child of Application .
The physical output on the screen
Physically, the Application element represents the browser window with the gray background shown in

Figure 3. The VBox component with the red background is inside of or contained within the Application
container in Figure 3.

The nesting structure that you give to the MXML code carries through to the physical arrangement of
the corresponding components in the resulting GUI.

The Label and Button elements
The two lines of code that begin with a left angle bracket followed by mx:Label and mx:Button

nest a Label element and a Button element inside the VBox element. Once again, this carries
through to the output GUI shown in Figure 3 where the label and the button are contained in the red
VBox component.

Note that as is the case with all standard Flex 3 components, the names of the Label and Button
elements are pre�xed with mx . (A di�erent pre�x is used in Flex 4.)

Properties of the Label and Button element
The Label element has an attribute that sets the text property to the text that you see in the label

in Figure 3. Similarly, the Button element has an attribute that sets the button's label property to the
text that you see on the face of the button in Figure 3.

Grouping components in containers
The Flex VBox component is a container . Its purpose is to serve as a container for other components.

Flex 3 provides several other container components in addition to the VBox component. They are used
to group components in the GUI in a way that helps the user navigate the GUI.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

99

The Label and Button elements are empty
The Label and Button components are not containers. Therefore, they cannot contain other

components in the GUI.
As a result, the Label and Button elements in Listing 2 are empty . They don't contain any other

elements. However, even empty elements can and often do have attributes.
No end tags for Label and Button elements
Because the Label and Button elements are empty elements, they don't have end tags. Instead they

have a slash character immediately to the left of the closing angle bracket on the start tag.
The �nal upgrade
Now I'm going to upgrade the project once again to produce the output GUI shown in Figure 2. In this

upgrade, I will add a custom label and a custom button that create name con�icts. I will resolve the name
con�ict using namespaces.

Two custom components
The custom components are de�ned in the �les named Label.mxml and Button.mxml shown in

Figure 1. I will begin by discussing the MXML code for each of these custom components.
Listing 3 shows the MXML code for the custom label.

Listing 3.3: Contents of the �le named Label.mxml.

<?xml version="1.0" encoding="utf-8"?>

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Label
text="Custom Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>

</mx:VBox>

Won't discuss in detail
Since this lesson is mainly about using namespaces to resolve name con�icts, and is not about creating

custom components, I'm not going to go into detail at this time about how to create custom components.
Brie�y, Listing 3 creates a custom component consisting of a label with yellow bold text and a font size of
12 points inside of a VBox container.

This custom component is shown as the label with the yellow text in the middle of Figure 2. (I will
cover the details of designing and creating custom components in a future lesson.)

Contents of the �le named Button.mxml
Listing 4 shows the MXML code for the custom button.

Listing 3.4: Contents of the �le named Button.mxml.

<?xml version="1.0" encoding="utf-8"?>

<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"

backgroundColor="#00FFFF">

<mx:Label
text="Custom Component."

color="#000000"

fontSize="12" fontWeight="bold"/>

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

100 CHAPTER 3. FLEX

<mx:Button
label="Button"/>

</mx:VBox>

This custom component can also be viewed in Figure 2. Brie�y it consists of a button and a label with
black text in a small VBox container with a cyan background.

Contents of the �le named NameSpace01.mxml
Listing 5 shows the contents of the �le named NameSpace01 , which is the main driver for the entire

application.

Listing 3.5: Contents of the �le named NameSpace01.mxml.

<?xml version="1.0"?>
<!--
Namespace01

Illustrates the use of namespaces to avoid name conflicts.

-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:MyComps="customComps.*"

backgroundColor="#FFFF00">

<!--Add a standard VBox container-->
<mx:VBox backgroundColor="#FF0000">

<mx:Label text="Standard Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>
<mx:Button label="Standard Button" />

<MyComps:Label id="customLabel"/>
<MyComps:Button id="customButton"/>

</mx:VBox>

</mx:Application>

Resolving name con�icts using namespaces
This code adds two standard components named Label and Button and two custom components

named Label and Button to a VBox container.
Because the custom components have the same names as the standard components, a name con�ict arises.

Listing 5 resolves the name con�ict using namespaces.
The folder named customComps
As you may recall from Figure 1, the two �les that represent the custom components are in a folder named

customComps , which is a child of the folder named src . Thus, the folder named customComps is
a sibling of the �le named NameSpace01.mxml .

A new namespace attribute
The code that begins with xmlns:MyComps in Listing 5 is a new attribute for the Application

element. This attribute establishes a new namespace with the pre�x MyComps . The namespace pre�x
points to all of the �les in the folder named customComps .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

101

The name customComps identi�es the folder and the period and asterisk following the name mean
that all of the �les in the folder are part of the new namespace.

Must use the new pre�x
In order to include the custom components de�ned by these �les in the MXML document, elements

named after these components must be pre�xed with MyComps .
Using the mx pre�x for standard Flex components
The code that begins with mx in Listing 5 uses the standard mx namespace pre�x to add a standard

Label component and a standard Button component to the VBox container with a red background.
You should have no di�culty identifying the start and end tags for the VBox element. Attributes are
applied to the mx:Label element to set the color, size, and weight of the text in the label.

Using the MyComps pre�x for custom components
The two lines of code that begin with a left angle bracket and the word MyComps use the new

MyComps namespace pre�x to add a custom Label component and a custom Button component to
the same VBox container.

Resolving the name con�ict
Because the elements for standard components are pre�xed with mx and the elements for custom

components are pre�xed with MyComps , the compiler is able to distinguish between them and to resolve
the name con�icts.

The �nal result is the GUI shown in Figure 2.

3.1.6 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

3.1.7 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: XML - Namespaces - Flex 3
• Files:

· Flex0086\Flex0086.htm
· Flex0086\Connexions\FlexXhtml0086.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

3.2 XML - Namespaces - Flex 44

note: Click Namespace02 5 to run the Flex program from this lesson. (Click the "Back"
button in your browser to return to this page.)

4This content is available online at <http://cnx.org/content/m34602/1.1/>.
5http://cnx.org/content/m34602/latest/Namespace02.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

102 CHAPTER 3. FLEX

3.2.1 Table of Contents

• Preface (p. 102)

· General (p. 102)

* Viewing tip (p. 102)

· Figures (p. 102)
· Listings (p. 103)

· Supplemental material (p. 103)

• General background information (p. 103)

· Historical perspective (p. 103)
· What is Flex? (p. 103)

• Preview (p. 105)
• Discussion and sample code (p. 105)

· Skeleton mxml code and namespaces (p. 106)
· The sample program named Namespace02 (p. 107)

• Run the program (p. 115)
• Resources (p. 115)
• Miscellaneous (p. 115)

3.2.2 Preface

3.2.2.1 General

This tutorial lesson is part of a series of lessons dedicated to programming using Adobe Flex.

note: The material in these lessons is based on Flex version 3 and Flex version 4. A distinction
between the two will usually be made in those situations where that distinction is important.

A previous lesson in this series titled XML - Namespaces - Flex 3 6 concentrated on teaching the XML
concept of namespaces and illustrated the concept using a program written in Flex version 3.

Di�erences in namespaces between Flex 3 and Flex 4
Some of the �rst things that one is likely to notice when comparing Flex version 3 to Flex version 4 7

are some obvious di�erences in the use of namespaces. Therefore, this is an opportune place in the series to
introduce Flex version 4 and to explain some of the di�erences between the two versions.

3.2.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

3.2.2.2.1 Figures

• Figure 1 (p. 108) . Output from Namespace01.
• Figure 2 (p. 108) . Output from Namespace02.
• Figure 3 (p. 109) . Project tree for the project named Namespace02.

6http://cnx.org/content/m34600/latest/
7http://www.adobe.com/devnet/�ex/articles/�ex3and4_di�erences.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

103

3.2.2.2.2 Listings

• Lasting 1 (p. 106) . Skeleton mxml code for a new Flex 3 project.
• Listing 2 (p. 106) . Skeleton mxml code for a new Flex 4 project.
• Listing 3 (p. 110) . The main mxml �le for Namespace01.
• Listing 4 (p. 111) . The main mxml �le for Namespace02.
• Listing 5 (p. 113) . Contents of the �le named Label.mxml.
• Listing 6 (p. 114) . Contents of the �le named Button.mxml.

3.2.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 8 .

3.2.3 General background information

3.2.3.1 Historical perspective

Adobe's Flex is an XML-based programming language that is used to create programs that execute in the
Adobe Flash Player 9 .

Teaching XML using Flex
In the Spring semester of 2010, I introduced Adobe's Flex version 3 and the Flex Builder 3 IDE into

a course named Introduction to XML that I had been teaching for several years at Austin Community
College in Austin, TX. The concept of using Flex as the programming vehicle to teach XML was well received
by the students.

During that same semester, Adobe released Flex version 4 and replaced Flex Builder 3 with a new
IDE named Flash Builder 4 . The new IDE supports both Flex 3 and Flex 4.

A fortunate circumstance
This is a fortunate circumstance insofar as the concept of using Flex to teach XML is concerned. Flex 4 is

similar to, but very di�erent from, and somewhat more complicated than Flex 3. The availability of the two
versions of Flex makes it possible for the students to gain experience with two similar but di�erent �avors
of XML, both supported by the same IDE and both supported by similarly formatted documentation.

3.2.3.2 What is Flex?

As mentioned above, Flex is an XML-based programming language that is used to create programs that
execute in Adobe's Flash Player. In order to understand Flex, and particularly the di�erences between Flex
3 and Flex 4, we need to start with the Flash Player and work backwards to Flex.

What is the Flash Player?
According to the Flash Player 10 website:

Adobe Flash Player is a cross-platform browser-based application runtime that delivers uncom-
promised viewing of expressive applications, content, and videos across screens and browsers.
Flash Player delivers breakthrough web experiences to over 98% of Internet users.

Flash Player is widely available
Many of the popular websites that people frequently visit require that the Flash Player be installed on

the local computer in order to view the material on the website.

8http://www.dickbaldwin.com/toc.htm
9http://www.adobe.com/products/�ashplayer/

10http://www.adobe.com/products/�ashplayer/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

104 CHAPTER 3. FLEX

Typically if you visit a website that requires the Flash Player and you don't have it installed on your com-
puter, you will be guided through the installation process. Therefore, a very large percentage of computers
already have the Flash Player installed.

An execution engine
In short, the Flash Player is an execution engine that is used to execute or play programs that are

written in the ActionScript programming language. (See Baldwin's ActionScript programming website
11 .)

What is ActionScript?
According to the ActionScript Technology Center, 12

"Adobe ActionScript is the programming language of the Adobe Flash Platform. Originally de-
veloped as a way for developers to program interactivity, ActionScript enables e�cient program-
ming of Adobe Flash Platform applications for everything from simple animations to complex,
data-rich, interactive application interfaces.

First introduced in Flash Player 9, ActionScript 3.0 is an object-oriented programming (OOP)
language based on ECMAScript � the same standard that is the basis for JavaScript � and
provides incredible gains in runtime performance and developer productivity."

What is the Adobe Flash Platform?
According to Adobe Flash Platform 13 ,

"The Adobe Flash Platform is an integrated set of technologies surrounded by an established
ecosystem of support programs, business partners, and enthusiastic user communities. Together,
they provide everything you need to create and deliver the most compelling applications, content,
and video to the widest possible audience."

The primary delivery mechanisms for applications built with the Adobe Flash Platform are the Adobe Flash
Player 14 and Adobe Air 15 .

What is Adobe Air?
According to Adobe Air 16 ,

"The Adobe AIR runtime lets developers use proven web technologies to build rich Internet
applications that run outside the browser on multiple operating systems."

Once again, what is Flex?
Flex is an XML-based programming language that can be used to create ActionScript programs for

execution in the Flash Player . When you compile a Flex project, it is �rst converted into an ActionScript
program and the ActionScript program is compiled into a form suitable for execution by the Flash Player.

According to The Adobe Flash Builder 4 and Flex 4 Bible 17 by David Gassner,

When you compile a Flex application, your MXML code is rewritten in the background into
pure ActionScript 3. MXML can be described as a "convenience language" for ActionScript 3
that makes it easier and faster to write your applications that if you had to code completely in
ActionScript.

11http://www.dickbaldwin.com/tocActionScript.htm
12http://www.adobe.com/devnet/actionscript/
13http://www.adobe.com/�ashplatform/
14http://www.adobe.com/products/�ashplayer/?promoid=DJDWD
15http://www.adobe.com/products/air/?promoid=DJDTL
16http://www.adobe.com/products/air/?promoid=DJDTL
17http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470488956.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

105

Easier and faster is debatable
In my opinion, as a person with many years of object-oriented programming experience, it is debatable

whether coding ActionScript programs in Flex is easier and faster than coding them in pure ActionScript.
Any program that can be coded in Flex can also be coded in pure ActionScript, but the reverse is not true.

XML, not ActionScript
In any event, the purpose of the lessons in this series is to teach XML and not to teach ActionScript

programming. (ActionScript OOP is a di�erent course that I teach at the college.) Therefore, inso-
far as practical, the lessons in this series will concentrate on Flex programming and not on ActionScript
programming.

However, to understand the di�erences between Flex 3 and Flex 4, it will sometimes be necessary to refer
to ActionScript, particularly insofar as the documentation is concerned.

3.2.4 Preview

Run the Flex program named Namespace02
If you have the Flash Player plug-in (version 10 or later) installed in your browser, click here (p. 101)

to run the program that I will explain in this lesson.
If you don't have the proper Flash Player installed, you should be noti�ed of that fact and given an

opportunity to download and install the Flash Player plug-in program.
Namespaces is an XML concept
The concept of namespaces is an XML concept. It is not a concept that is exclusive to Flex. However,

because Flex is an XML-based programming language, Flex makes heavy use of namespaces.
I explained the concept of XML namespaces in the earlier lesson titled XML - Namespaces - Flex 3 18 .

I also presented and explained a relatively simple Flex program that illustrated the use of XML namespaces
to resolve name con�icts.

Some of the di�erences between Flex 3 and Flex 4
In this lesson, I will present a somewhat broader view of namespaces and will also present and explain a

program that illustrates some of the di�erences between Flex 3 and Flex 4.
In explaining the di�erences between Flex 3 and Flex 4, I will need to dig a little more deeply into the

Flex programming language than was the case in the earlier lesson.
The program that I explained in the earlier lesson was written exclusively using Flex 3. The program

that I will explain in this lesson was written exclusively in Flex 4. The new Flex 4 program approximates
the look and feel of the Flex 3 program from the earlier lesson.

3.2.5 Discussion and sample code

Two ways to create Flex projects
As I explained in the earlier lesson, Flex projects can be created using nothing more than a text editor

and a Flex software development kit (SDK) that is freely available from the Adobe website. However, to
make the development of Flex projects a little easier, Adobe previously sold a product named Flex Builder
3 and now sells a replacement product named Flash Builder 4 , which includes the Flex 3 and Flex 4
SDKs along with a visual project editor.

The project that I explained in the earlier lesson was created using Flex Builder 3. The project that I
will explain in this lesson was created using Flash Builder 4.

Free for educational use
As of June 2010, Adobe provides free copies 19 of Adobe Flash Builder 4 Standard to:

• Students, faculty and sta� of eligible educational institutions
• Software developers who are a�ected by the current economic condition and are currently unemployed

18http://cnx.org/content/m34600/latest/
19http://www.adobe.com/devnet/�ex/free/index.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

106 CHAPTER 3. FLEX

• Event attendees who receive a special promotional code at their event

3.2.5.1 Skeleton mxml code and namespaces

Skeleton mxml code for a new Flex 3 project
When you create a new Flex 3 project in Flex Builder 3 or Flash Builder 4, a skeleton of the required

mxml �le is created for you. Listing 1 shows the contents of such a skeleton mxml �le for a Flex 3 project.

Listing 3.6: Skeleton mxml code for a new Flex 3 project.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">

</mx:Application>

Created using Flex Builder 3
The skeleton code shown in Listing 1 was created using Flex Builder 3, but the skeleton code for a Flex

3 project is essentially the same regardless of whether it is created using Flex Builder 3 or Flash Builder
4. (Flash Builder 4 inserts a couple of relatively insigni�cant size attributes that are not inserted by Flex
Builder 3.)

The namespace (xmlns) attribute
In the earlier lesson, I explained the concept of the root element , and I explained that the term xmlns

is the required name for a namespace attribute. (This is true for XML in general and not just for Flex
mxml.) While it isn't necessary in general to include a namespace attribute in the root element, when
a namespace attribute is included in the root element, it becomes the default namespace for the entire
document.

Namespace is always required for a Flex project
Even though it isn't necessary to include a namespace attribute in the root element of a general XML

document, it is always necessary to include the namespace attribute shown in Listing 1 in the root element
of the main mxml document for a Flex 3 project. That is why Flex Builder 3 includes it in the skeleton code
for the project.

What does this mean?
The inclusion of the default namespace attribute shown in Listing 1 means that all elements with names

that refer to components from the standard Flex 3 library of components must be pre�xed with "mx:" .
Skeleton mxml code for a new Flex 4 project
As with a Flex 3 project, when you create a new Flex 4 project in Flash Builder 4, a skeleton of the

mxml �le is created for you. Listing 2 shows the contents of such a skeleton mxml �le for a Flex 4 project.

Listing 3.7: Skeleton mxml code for a new Flex 4 project.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955"

minHeight="600">
<fx:Declarations>

<!-- Place non-visual elements (e.g., services,

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

107

value objects) here -->
</fx:Declarations>

</s:Application>

More namespace attributes in the root element
If you compare Listing 2 with Listing 1, you will see that the namespace attributes in Listing 2 are

di�erent from those in Listing 1, and there are more of them in Listing 2.
Listing 1 has only one namespace attribute while Listing 2 has three namespace attributes.
Mix or match Flex components
You can use Flash Builder 4 to create projects that

• use Flex 3 exclusively
• use Flex 4 exclusively
• use a mixture of the two

Must specify compiler version for project
When you create a new project in Flash Builder 4, you must specify whether the project is to be compiled

using the Flex 3 compiler or the Flex 4 compiler.
Di�erent versions of the skeleton code
If you specify the Flex 3 compiler, the skeleton code will look like Listing 1 (with a couple of additional

sizing attributes) . For that case, you must use Flex 3 components exclusively.
If you specify the Flex 4 compiler, the skeleton code will look like Listing 2. In that case, you can use

Flex 3 components, Flex 4 components, or a mixture of the two.
What do these namespace attributes mean?
Building on what I explained earlier, the inclusion of the namespace attributes with the name "mx" in

Listing 1 and Listing 2 means that all elements with names that refer to components from the Flex 3 library
of components must be pre�xed with "mx:" . (You will see examples of this in code fragments later in
this lesson.)

The inclusion of the namespace attribute with the name "s" in Listing 2 means that all elements with
names that refer to the new components from the Flex 4 library of components must be pre�xed with "s:"
. (You will also see examples of this in code fragments later in this lesson.)

Resolution of duplicate names
The Flex 3 library and the Flex 4 library contain many components with the same names, such as

Label and Button . Therefore, the name of the component alone is not su�cient to identify which of two
components having the same name is to be used at a particular location in the program. The "mx:" pre�x
and the "s:" pre�x are the mechanisms by which you identify the correct component to the compiler.

note: For those with knowledge of ActionScript or Java programming, this is analogous to using
a package name to identify a class in those programming languages.

You can read more on the topic of required namespaces here 20 .

3.2.5.2 The sample program named Namespace02

Figure 1 shows the output from the Flex 3 program named Namespace01 that I explained in the earlier
lesson on this topic.

20http://www.adobe.com/devnet/�ex/articles/�ex3and4_di�erences_03.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

108 CHAPTER 3. FLEX

Output from Namespace01.

Figure 3.4: Output from Namespace01.

Figure 2 shows the output from the Flex 4 program named Namespace02 that I will explain in this
lesson.

Output from Namespace02.

Figure 3.5: Output from Namespace02.

Mostly default look and feel
In both programs, the top portion of the output was purposely colored red and the bottom portion

was purposely colored cyan. Otherwise, the colors, sizes, positions, and shapes of the components in both

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

109

programs were allowed to take on default values.
The project tree for the project named Namespace02
The project tree for the Flex 4 project named Namespace02 is shown in Figure 3.

Project tree for the project named Namespace02.

Figure 3.6: Project tree for the project named Namespace02.

A comparable image for the Flex 3 project named Namespace01 was provided in the earlier lesson.
If you compare the two, you will see that more information is displayed in the project tree for the Flex 4
project in Figure 3.

Major items of interest
For purposes of this lesson, we will be primarily interested in the following items showing in Figure 3.

Those are the items that I had to create in order to create the project.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

110 CHAPTER 3. FLEX

• The �le named Namespace02.mxml
• The folder named customComps
• The �le named Button.mxml
• The �le named Label.mxml

Two buttons, three labels, etc.
As I explained in the earlier lesson, the project named Namespace01 creates a GUI with two buttons

and three labels in VBox containers with red and cyan backgrounds as shown in Figure 1.
All are mx components
Because that project was created exclusively using Flex 3, all of the components shown in Figure 1 are

Flex 3 components. I will sometimes refer to them as "mx" components because of the name of the
namespace attribute shown in Listing 1.

No VBox components in Namespace02
Because the Flex 4 program named Namespace02 was intended to replicate Namespace01 , it also

contains two buttons and three labels. However, as you will see later, they are not in VBox containers
because there is no VBox container in Flex 4. Instead, they are in containers named Group and
VGroup .

All are Spark components
Because Namespace02 was created exclusively using Flex 4, all of the components are Flex 4 compo-

nents. I will sometimes refer to them as "Spark" components on the basis of the last word in the value
of the namespace attribute named "s" in Listing 2.

note: The names "mx" and "Spark" actually derive from ActionScript package names, but an
explanation of that is beyond the scope of this lesson.

The main mxml �le for Namespace01
Listing 3 shows the code in the main mxml �le for the Flex 3 project named Namespace01 .

Listing 3.8: The main mxml �le for Namespace01.

<?xml version="1.0"?>
<!--
Namespace01

Illustrates the use of namespaces to avoid name conflicts.

-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:MyComps="customComps.*"

backgroundColor="#FFFF00">

<!--Add a standard VBox container-->
<mx:VBox backgroundColor="#FF0000">

<mx:Label text="Standard Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>
<mx:Button label="Standard Button" />

<MyComps:Label id="customLabel"/>
<MyComps:Button id="customButton"/>

</mx:VBox>

</mx:Application>

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

111

The Application element
I will explain mxml syntax in more detail in future lessons, so I'm not going to go into syntax issues

at this point in time. Su�ce it to say that the Application element in Listing 3 represents the entire
program. The behavior as well as the look and feel of the program is de�ned by the attributes and the
content of the Application element. Everything in the program is part of the attributes or the content of
the Application element.

An mx:VBox element
From what you already know about XML, you can see that an element named mx:VBox is part of

the content of the Application element. Very brie�y, in Flex, an mx:VBox element is a container
element that can contain other elements. Couched in visual terms such as Figure 1, an mx:VBox object
can contain other components such as labels and buttons.

Note that the mx:VBox element name has an mx pre�x, meaning that it represents a component
from the Flex 3 library as explained earlier.

The backgroundColor attribute of the mx:VBox element
Also note that the mx:VBox element has an attribute named backgroundColor with a value of

"#FF0000" . In a future lesson, I will explain that this is a hexadecimal value that represents the color red
at maximum intensity. This attribute produces the red background color that you see in the upper portion
of Figure 1.

note: The lower portion of Figure 1 also has a red background color, but it is covered by another
mx:VBox element with an opaque cyan background color.

The backgroundColor attribute for the Application element
While we are discussing background colors, it is also worth mentioning that the application element

has an attribute named backgroundColor with a value of "#FFFF00" . This is the hexadecimal
value for yellow and causes the background color of the entire Flash Player window to be yellow.

Contents of the mx:VBox element
The mx:VBox element contains the following four elements:

• mx:Label
• mx:Button
• MyComps:Label
• MyComps:Button

In the earlier lesson, I explained that the �rst two of these four elements represent components from the
standard Flex 3 library. (Hence the "mx:" pre�x.) The last two represent custom components that were
constructed using components from the standard Flex 3 library.

The MyComps:Button element
If you go back to the earlier lesson 21 and examine the code for the custom component named My-

Comps:Button , you will see that it has an mx:Label and an mx:Button in an mx:VBox container
with a backgroundColor value of "#00FFFF" (cyan) . This produces the cyan rectangle containing the
label and the button in the bottom portion of Figure 1.

The main mxml �le for Namespace02
The main mxml �le for the Flex 4 project named Namespace02 is shown in Listing 4.

Listing 3.9: The main mxml �le for Namespace02.

<?xml version="1.0" encoding="utf-8"?>

<!--File: Namespace02.mxml

This is a Flex 4 version of the Flex 3 program

21http://cnx.org/content/m34600/latest/#Listing_4

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

112 CHAPTER 3. FLEX

named Namespace01-->

<!--Declare a namespace as the folder named customComps,

which contains a custom label component and a second

custom component consisting of a Spark Label and a

Spark Button. Then declare the three namespaces required

by Flex 4. Finally cause the background to be yellow.-->
<s:Application xmlns:MyComps="customComps.*"

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

backgroundColor="0xFFFF00">

<!--Put a Spark Label and a Spark Button along with two

custom components in a Spark Group with a red background

color.-->
<s:Group horizontalCenter="0" verticalCenter="0">

<!--Create a red rectangle to serve as the background

color for the Group-->
<s:Rect width="100%" height="100%">

<s:fill>
<s:SolidColor color="0xFF0000" />

</s:fill>
</s:Rect>

<!--Add a Spark VGroup to contain the components and

cause them to be laid out vertically.-->
<s:VGroup>

<!--Add two Spark components to the VGroup-->
<s:Label text="Spark Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>
<s:Button label="Spark Button" />

<!--Add two custom components to the VGroup-->
<MyComps:Label id="customLabel"/>
<MyComps:Button id="customButton"/>

</s:VGroup>

</s:Group>

</s:Application>

Lots of comments
As you can see, I included lots of comments in Listing 4 in an attempt to make it as self-explanatory as

possible.
In this lesson, I will concentrate on the di�erences between this Flex 4 project and the Flex 3 project

named Namespace01 that arise from creating the two projects using di�erent versions of Flex.
Order of attributes is not important
Let me begin by explaining that in XML, the order in which you write the attributes for an element

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

113

doesn't matter so long as they are all there with the correct syntax, the correct names, and the correct
values.

More and di�erent namespace attributes
As I explained earlier, a Flex 4 project often has three required namespace attributes and almost always

has two. (Because I didn't use any mx components in this program, I could have removed the namespace
attribute named mx from Listing 4.)

Other than the namespace attributes, the application element in Listing 4 has the same attribute
names and values as the application element in Listing 3.

No VBox element in Namespace02
The next thing to notice is that there is no mx:VBox element in Listing 4. Instead, there is an

s:Group element (a Flex 4 Spark component) that replaces the mx:VBox element and serves as a
container for the labels and the buttons.

No backgroundColor attribute
The s:Group element has two positioning attributes that cause it to appear in the center of the Flash

Player window, but it does not have an attribute named backgroundColor . Like many of the Spark
components, and unlike many of the mx components, the s:Group element does not have built-in attributes
that are used to control its appearance. Instead, other ways must be found to control the appearance of
many Spark components.

A red rectangle
In this case, Listing 4 causes the s:Group element to appear to have a red background by causing it

to contain a red rectangle of exactly the right dimensions to completely �ll the s:Group element. This
produces the red background color in the upper portion of Figure 2.

note: As with Figure 1, the lower portion of Figure 2 also has a red background color, but it is
covered by another smaller rectangle with an opaque cyan color.

Add an s:VGroup container
Then Listing 4 adds a Spark s:VGroup container to serve essentially the same purpose as the

mx:VBox container in Listing 3 (except that it doesn't control the red background color) . The following
elements are added to the s:VGroup element in Listing 4 In a manner very similar to Listing 3:

• s:Label
• s:Button
• MyComps:Label
• MyComps:Button

The �rst two elements in the above list are Spark elements having similar characteristics to the mx elements
having the same names.

The last two elements in the above list are custom components having similar characteristics to the
custom components having the same names in the earlier program.

Contents of the �le named Label.mxml
The contents of the custom component �le named Label.mxml are shown in Listing 5.

Listing 3.10: Contents of the �le named Label.mxml.

<?xml version="1.0" encoding="utf-8"?>

<!--Create a custom label by putting a Spark Label in

a Spark Group-->
<s:Group xmlns:MyComps="customComps.*"

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

114 CHAPTER 3. FLEX

xmlns:mx="library://ns.adobe.com/flex/mx">

<s:Label
text="Custom Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>

</s:Group>

Contents of the �le named Button.mxml
The contents of the custom component �le named Button.mxml are shown in Listing 6.

Listing 3.11: Contents of the �le named Button.mxml.

<?xml version="1.0" encoding="utf-8"?>

<!--Create a custom component by putting a Spark Label

and a Spark Button in a Spark VGroup inside of a Spark

Group with a Cyan background color.-->
<s:Group xmlns:MyComps="customComps.*"

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx">

<!--Fill the entire group with a cyan rectangle-->
<s:Rect width="100%" height="100%">

<s:fill>
<s:SolidColor color="0x00FFFF" />

</s:fill>
</s:Rect>

<!--Put a Spark VGroup in the Group and put a Spark

Label and a Spark Button in the VGroup-->
<s:VGroup>

<s:Label
text="Custom Component."

color="#000000"

fontSize="12" fontWeight="bold"/>

<s:Button
label="Button"/>

</s:VGroup>
</s:Group>

No further explanation needed
Assuming that you understand the contents of the �les named Label.mxml and Button.mxml in

the Flex 3 program in the earlier lesson, and assuming that you understood the explanation of the di�erences
between the two main mxml �les given above, the comments in Listing 5 and Listing 6 should serve as a
su�cient explanation of the code in Listing 5 and Listing 6.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

115

3.2.6 Run the program

I encourage you to run (p. 101) this program from the web. Then copy the code from Listing 4 through
Listing 6. Use that code to create your own projects. Compile and run the projects. Experiment with the
code, making changes, and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

3.2.7 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

3.2.8 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: XML - Namespaces - Flex 4
• Files:

· Flex0086a\Connexions\FlexXhtml0086a.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

3.3 The Default Application Container - Flex 3 and Flex 422

note: Click AppBackground01 23 and AppBackground04 24 to run the Flex 3 and Flex 4
projects discussed in this lesson. (Click the "Back" button in your browser to return to this page.)

3.3.1 Table of Contents

• Preface (p. 116)

· General (p. 116)
· Viewing tip (p. 118)

* Figures (p. 118)
* Listings (p. 118)

· Supplemental material (p. 118)

• General background information (p. 118)
• Preview (p. 122)
• Discussion and sample code (p. 124)

· The Flex 3 version (p. 124)
· The Flex 4 version (p. 127)

22This content is available online at <http://cnx.org/content/m34604/1.2/>.
23http://cnx.org/content/m34604/latest/AppBackground01.html
24http://cnx.org/content/m34604/latest/AppBackground04.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

116 CHAPTER 3. FLEX

· Another Flex 4 application (p. 133)

• Run the programs (p. 134)
• Resources (p. 134)
• Miscellaneous (p. 135)

3.3.2 Preface

3.3.2.1 General

This lesson is part of a series of tutorial lessons dedicated to programming with Adobe Flex.
What is Adobe Flex?
The previous lessons in this series have primarily dealt with XML issues and have nibbled around the

edges of Flex. At this point, it is time to get really serious about Flex and start understanding what Flex,
(as an XML programming language) , is all about.

According to one of the pages on the Adobe website,

"Flex is a highly productive, free open source framework for building and maintaining expressive
web applications that deploy consistently on all major browsers, desktops, and operating systems.
While Flex applications can be built using only the free open source framework, developers can
use Adobe Flex Builder software to dramatically accelerate development."

note: Subsequent to the original publication of this lesson, Adobe has released Flex version 4
(in addition to Flex version 3) and has replaced the Flex Builder 3 IDE with a new IDE named
Flash Builder 4.

Flash Builder 4 supports both Flex 3 and Flex 4.

As of June 2010, Flex Builder 3 is no longer available, but Flash Builder 4 is available for down-
loading and is free for educational use 25 .

I have updated this lesson to accommodate the availability of Flex 4 and Flash Builder 4 in addition
to Flex 3.

Although Flash Builder 4 is very similar to Flex Builder 3 from a user perspective, there are
numerous di�erences between Flex 3 and Flex 4. I will touch on some of these di�erences in this
lesson and will explore them in more detail in future lessons.

Download links
Download links for the free Flex 3 and Flex 4 frameworks, as well as the Flash Builder 4 IDE are provided

in Resources (p. 134) .
Powerful but more complicated
Flex 4 is more powerful, but also signi�cantly more complicated than Flex 3. Therefore, it isn't clear to

me that developers will want to make an immediate switch to Flex 4. Therefore, I will continue publishing
material on Flex 3 in addition to Flex 4.

Is there a tipping point?
Anything that can be programmed in Flex can also be programmed directly in ActionScript, but the

reverse is not true. It occurs to me that at some point, as Flex becomes more complicated, there may be a
tipping point where developers will simply switch to ActionScript instead of expending the e�ort necessary
to learn about new more-complicated aspects of Flex.

One of several ways to create applications for Flash Player (version 10 or later)
Flex 3 and Flex 4 (combined with ActionScript 3) simply provide one of several ways that developers

can produce downloadable applications that will run in Adobe's Flash Player (version 10 or later) or Adobe
Air (see Resources (p. 134)) .

25http://www.adobe.com/devnet/�ex/free/index.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

117

Running Flash Player
Very brie�y, Adobe Flash Player normally runs applications in a web browser while Adobe Air runs

applications in a stand alone mode from the desktop. However, if you have installed Flex Builder 3 or Flash
Builder 4, it is usually possible to cause Flash Player to start and run in a stand alone mode by double
clicking on an swf �le. (See Figure 1.) If double clicking doesn't work, you can locate and run the �le
named FlashPlayer.exe. Once the Flash Player is running, you can open and run other swf �les.

Why do I care about Flex and Flash Player?
One of the fastest growing segments of the game programming industry is the area of social games that

typically run in Flash Player. I currently teach a course titled "Game Development using C++" and
another course titled "Game and Simulation Programming I : C#" based on Microsoft's XNA Game
Studio. I have a long-term interest in possibly also teaching a course in "Game Development using Flex
and ActionScript."

Flex and ActionScript
However, my more immediate interest is related to two other courses that I teach. One of those courses

is an introduction to XML. The other course is Object-Oriented Programming using ActionScript 3.
Flex is an XML-based language that is used to produce mxml �les. (In fact, Flex is simply a shorthand

way of writing ActionScript program �les. When you compile Flex MXML �les, they are automatically
converted into ActionScript �les before compilation.)

The resulting ActionScript �les, along with other resources, are compiled into swf �les that can be
executed in Flash Player or Adobe Air.

Most of the lab projects in my XML course require the students to create Flex projects using both Flex
3 and Flex 4. Most of the lab projects in my more advanced ActionScript programming course require the
students to use Flex as a launch pad for their ActionScript programs.

Flex SDK versus Flash Builder
Although it is possible to create Flex applications using nothing more than the free open source Flex

SDKs (see Resources (p. 134)) and a text editor, that can be tedious. Flash Builder 4 helps you to write
mxml �les containing layout and controls and makes the process somewhat more enjoyable. It will probably
also help you to be more productive.

A complete Flex application
A complete Flex application consists of

• One or more mxml �les that may or may not embed ActionScript 3 code.
• None, one or more ActionScript 3 �les.
• Various resource �les such as image �les, sound �les, etc.

As mentioned earlier, these are compiled into a Flash swf �le, which can be executed in either a Flash player
or (in some cases) Adobe Air.

Division of responsibility
Flex provides the layout and control structure for the application in an XML format while ActionScript

provides the program logic. (Of course, the whole thing can be written in ActionScript if you choose to do
so.)

ActionScript is an issue for my XML students
While earlier versions of ActionScript may have been simple and easy to learn, ActionScript 3 is a fully

object-oriented programming language with a complexity level on par with C++.
Students in my XML class aren't required to have any programming knowledge, and aren't expected to

have the prerequisite knowledge that would qualify them to learn ActionScript 3 while learning XML at the
same time. Therefore, the early lessons in this series concentrate on the use of mxml for layout and control
and forego any requirement to understand ActionScript 3. As I mentioned earlier, I teach object-oriented
programming using ActionScript in a di�erent course.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

118 CHAPTER 3. FLEX

3.3.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

3.3.2.2.1 Figures

• Figure 1 (p. 120) . Flash Player output for a new Flex project.
• Figure 2 (p. 121) . Browser output for a new Flex project.
• Figure 3 (p. 126) . Application window background for alpha values of 0.0, 0.33, 0.66, and 1.0.
• Figure 4 (p. 132) . Gradient output for narrow ratio zone.
• Figure 5 (p. 134) . Flash window for Flex 4 project named AppBackground04.

3.3.2.2.2 Listings

• Listing 1 (p. 122) . Skeleton mxml code for a new Flex 3 project.
• Listing 2 (p. 124) . Flex 3 application named AppBackground01.
• Listing 3 (p. 127) . Skeleton mxml code for a new Flex 4 project.
• Listing 4 (p. 128) . Flex 4 application named AppBackground03.

3.3.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 26 .

3.3.3 General background information

Download Flex
I have provided download links in Resources (p. 134) for both the free open source Flex SDKs and Flash

Builder 4.
Flash Builder 4 includes the SDKs for both Flex 3 and Flex 4 along with an IDE that is useful for creating

Flex applications. Both the raw SDK downloads and the Flash Builder 4 download includes a debug version
of the Adobe Flash Player.

Install the Flex SDK
Installation of the free open source Flex SDKs is a little complicated (but I will explain how to do it in

a future lesson) . I have provided a link in Resources (p. 134) for Installation and Release Notes.
Installation of Flash Builder 4 is straightforward, at least that is true for Windows. The download is an

exe �le. Just execute the downloaded �le and follow the installation instructions.
Getting started with the free SDKs
If you are using the free stand-alone SDKs, I will provide instructions for getting started creating ap-

plications with them in a future lesson. Those versions include a command-line compiler. You will need to
create your mxml �les using a text editor and compile them using the command-line compiler.

Getting started with Flash Builder 4
If you are using Flash Builder 4, I have provided several links in Resources (p. 134) that will help you

get started using the IDE. Perhaps the quickest way to get started is to view some of the videos at the link
titled Flex in a Week video training 27 .

Create a new project
Once you have Flash Builder 4 running, pull down the File menu and select New/Flex Project

. Enter the name of your new project into the dialog box, make certain that the radio button for Web

26http://www.dickbaldwin.com/toc.htm
27http://www.adobe.com/devnet/�ex/videotraining/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

119

application is selected, specify the compiler that you want to use (Flex 3 or Flex 4) and click the Finish
button. If you wish, you can specify a disk location for your project other than the default location.

The project tree
A directory tree for your new project will be created having at least the following folders:

• .settings
• bin-debug
• html-template
• libs
• src

This directory tree appears in the upper-left panel of the IDE. (Note that the tree shows some other nodes
such as default package and Flex x.x, but they aren't actually disk folders.)

Flash Player output for a new Flex project
The bin-debug folder will contain several �les including one with an swf extension and one with an

html extension . As I mentioned earlier (p. 117) , if you double-click the �le with the swf extension, it
should open in Adobe Flash Player looking something like Figure 1.

(Note that the default background color for a new Flex 3 project is the gray color shown in
Figure 1 while the default background color for a new Flex 4 project is white.)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

120 CHAPTER 3. FLEX

Flash Player output for a new Flex project.

Figure 3.7: Flash Player output for a new Flex project.

Browser output for a new Flex project
When you installed Flash Builder 4, you should have been given an opportunity to update one or more

browsers to include a special version of the Flash Player that supports debugging. If you open the html �le
mentioned above (p. 119) in one of those browsers, the output should look something like Figure 2 (with
either a gray or white background depending on which version of the Flex compiler was used to create the
project) .

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

121

Browser output for a new Flex project.

Figure 3.8: Browser output for a new Flex project.

The bin-release output
After you are satis�ed with your program, you can create an output folder named bin-release by

selecting Project/Export Release Build... The �les in this folder are similar to the �les in the
bin-debug folder, but they may be smaller. This folder has been purged of debug information, and is the
folder that is intended for deployment on a website.

Boring!
Granted, these outputs aren't all that exciting. However, they should help to con�rm that you have

Flash Builder 4 and Flash Player (version 10 or later) properly installed and linked to your browser.
The src folder
The folder in the directory tree (p. 119) mentioned earlier that will probably command most of your

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

122 CHAPTER 3. FLEX

attention is the folder named src. When you create a new Flex project, this folder will contain a �le with an
extension of mxml. If you double click on that �le name in the upper-left IDE window, the mxml �le will
open in the text editor window of the IDE. If you selected the Flex 3 compiler, the skeleton code will look
something like Listing 1. (It will be di�erent for Flex 4, but I will get into that later.)

A skeleton mxml �le
Listing 1 shows the skeleton mxml code for a new Flex 3 project. This is the XML code that you will

modify and supplement as you add features to your project.

Listing 3.12: Skeleton mxml code for a new Flex 3 project.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute"

minWidth="955"

minHeight="600">

</mx:Application>

Compile and run the project
You can compile and run the new project by selecting either Run or Debug on the Run menu.

(The IDE provides a few other ways to run the project as well.) The new project should open in your
browser looking pretty much like Figure 2. (Remember, gray background for Flex 3 and white background
for Flex 4.) If you selected Debug , some debug text information should be displayed in the Console
tab at the bottom of the IDE.

3.3.4 Preview

In this lesson, I will explain how to create two Flex projects. One is a simple Flex 3 project named
AppBackground01 . The other is a (not so simple) Flex 4 project named AppBackground03 that
replicates the output from the Flex 3 project.

Both projects are designed to produce the same output. To create the project using Flex 3, you will
simply add attributes to the Application element shown in Listing 1, resulting in the XML code shown
in Listing 2. However, you will need to do more than that to create the project in Flex 4. (Remember,
Flex 4 is more powerful but also more complicated to use.)

Finally, I will show you the output from another Flex 4 project and challenge you as the student to write
a Flex 4 project that produces a matching output.

More complex Flex projects
In general, to create more complex Flex projects, you will also need to add child elements, (which may

or may not include attributes) , to the Application element.
To incorporate logic in your Flex projects, you will need to learn how to write some ActionScript code

and embed ActionScript code in your Flex code (or integrate ActionScript code in other ways) .
Layout versus behavior
As I mentioned earlier, you can develop your Flex applications using the XML-based Flex language to

establish the layout for your application.
Although it is possible to use Flex alone to provide simple behavior for your applications (simple event

handling for example) , you will probably need to use ActionScript 3 to produce more complex behavior for
your applications. (Even the simple behavior requires some ActionScript, but it's not so obvious where the
Flex code ends and the ActionScript code begins.)

The layout capability in Flex 3 consists of containers (that may contain other containers) with names
like Canvas , HBox , VBox , etc. The containers can also contain controls with names like Button
, CheckBox , ComboBox , etc.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

123

The text editor
The upper-middle pane in the Flash Builder 4 IDE has two tabs labeled Source and Design . If

you select the Source tab, this upper-middle pane becomes a text editor in which you can edit XML and
ActionScript code. In addition, the lower-left pane becomes an outline showing the hierarchical structure of
your XML or ActionScript code.

The visual design editor
If you select the Design tab, the upper-middle pane becomes a visual design editor and the lower-left

pane becomes a toolbox containing a variety of components including Controls, Layouts, Navigators, and
Charts. (Note that there are di�erences in the component sets for Flex 3 and Flex 4.) In this mode, you
can drag components from the lower-left pane into the design pane and make physical adjustments to their
location, length, width, etc.

In addition, in design mode, the lower-right pane becomes a property window. You can select a component
in the design pane and then set various properties such as font, color, etc., in the properties window.

XML code is automatically updated
When you drag a component into the design pane and set properties on that component, the XML code

is automatically updated to re�ect the addition of that component with the speci�ed properties. Therefore,
when using Flash Builder 4 in design mode, you can largely avoid having to write raw XML code.

Flash Builder 4 versus the free open-source SDK
This visual design capability is probably the most important feature of Flash Builder 4 that separates it

from the free open-source Flex 3 and Flex 4 SDKs. Flash Builder 4 lets you design your layout visually and
it writes much of the XML code for you.

Documentation
The Adobe site provides extensive online documentation for Flex, Flash Builder, and ActionScript.

You will �nd numerous links to documentation in Resources (p. 134) . This is where you go to learn how to
use the Flex language in detail.

Documentation format
In its default form, much of the documentation is divided into three frames, two stacked vertically on the

left and one on the right. If you select All Packages and Frames (or something similar) at the top of
the rightmost frame, you will see Flex XML elements (classes) listed in the lower-left frame.

Select No Frames
If you select No Frames at the top, (which is not always available) the two frames on the left will

disappear. This is useful if you want to use the Find capability of your browser to search for a word in
the right frame. You can restore the three-frame format by selecting Frames at the top of the page.

Select a class
If you select a class, such as Application , in the lower-left frame, information about that class appears

in the rightmost frame. If you �nd two or more classes with the same name in the lower-left frame, one
probably refers to the Flex 3 version of the class and the other probably refers to the Flex 4 version of the
class. You must be very careful to make certain that you know which you are reading about. Reading about
one and thinking that you are reading about the other can lead to very frustrating programming errors.

Styles
Many of the components (p. 123) in Flex 3 have a variety of styles that can be applied to the component

either through the speci�cation of attributes in the XML element or the use of a Style element that
resembles a style sheet. (That is much less true for Flex 4, which takes a di�erent approach.) The Flex 3
example that I will explain in the next section will illustrate the relationship among the following properties
and styles for the Application element :

• backgroundColor
• backgroundGradientColors
• backgroundAlpha

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

124 CHAPTER 3. FLEX

3.3.5 Discussion and sample code

The Application element (see Listing 2) is a container into which you can place other components
including other containers. Future lessons will be concerned with the containment properties of the Ap-
plication element. In this lesson, I will concentrate on the properties and styles listed above (p. 123) that
can be applied to that element.

Run the program
Before continuing, I suggest that you run (p. 115) the program named AppBackground01 to famil-

iarize yourself with the screen output.

3.3.5.1 The Flex 3 version

The mxml �le
An XML listing for the Flex 3 application named AppBackground01 is shown in Listing 2.

Listing 3.13: Flex 3 application namedAppBackground01.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

backgroundColor="#FF0000"

backgroundGradientColors="[#00FF00, #0000FF]"

backgroundAlpha="1.0">
</mx:Application>

Background color, color gradient, and transparency
The output for this application is similar to that shown in Figure 2 except that in this case, the color,

color gradient, and transparency for the background is being controlled through the use of the following
attributes:

• backgroundColor
• backgroundGradientColors
• backgroundAlpha

The code in Listing 2 uses the backgroundColor attribute of the Application element to set the
background color of the Flash window to pure red using the hexadecimal notation #FF0000.

A few words about color
For those who may not be familiar with this concept, the overall background color is controlled by a

mixture of di�erent contributions of the red, green, and blue primary colors. For example, pure red plus
pure blue produces a color commonly known as magenta . Pure green plus pure blue produces cyan .
Pure red plus pure green produces yellow . Pure red plus pure green plus pure blue produces white . The
absence of all three colors produces black.

Three eight-bit bytes
The values for red, green, and blue respectively are speci�ed by the values of three eight-bit bytes. The

value of each byte can range from 0 to 255 decimal (00 to FF in hexadecimal) . A value of 0 (00 in
hexadecimal) means that the primary color is not included in the mixture and a value of 255 (FF in
hexadecimal) means that the primary color is included full strength in the mixture.

Using this scheme, it is possible to generate more than sixteen million di�erent colors.
The order of the red, green, and blue contributions to the overall color in hexadecimal notation is

RRGGBB, where the letter pairs stand for red, green, and blue respectively.
A color gradient
The Flex 3 application shown in Listing 2 sets the backgroundGradientColors attribute of the

Application element to range from pure green (#00FF00) at the top of the Flash window to pure blue

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

125

(#0000FF) at the bottom. As mentioned earlier, the application sets the backgroundColor to pure red
using the hexadecimal notation #FF0000.

As you will see later, the Application element of a Flex 4 application doesn't have an attribute
named backgroundGradientColors , so we will have to �nd another way to create a color
gradient in the Flash window for a Flex 4 application.

Alpha
The appearance of the resulting mix of colors can be controlled by changing the value of the back-

groundAlpha attribute of the Application element. This attribute can take on values ranging between
0.0 and 1.0. (In other programming systems, alpha is often allowed to vary between 0 and 255 decimal, or
between 00 and FF hexadecimal.)

Transparency or opacity
For those not familiar with the concepts surrounding screen color and transparency, the value of alpha

speci�es a transparency or opacity level. When an attempt is made to draw a pixel in the same screen
location as an existing pixel, the color of the last pixel drawn will be completely opaque and will dominate
if it has an alpha value of 1.0. In that case, the �rst pixel drawn will no longer be visible.

If the last pixel drawn has an alpha value of 0, it will be totally transparent and the �rst pixel drawn
will continue to be totally visible.

For values between 0.0 and 1.0, the �rst pixel drawn will show through to some extent and the �nal color
of the pixel will be a mix of the original color and the new color.

Four runs with di�erent alpha values
For this example, the Flex 3 application was modi�ed, compiled, and run four times in succession by

substituting four di�erent values of backgroundAlpha into the code in Listing 2. The results are shown
in Figure 3.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

126 CHAPTER 3. FLEX

Application window background for alpha values of 0.0, 0.33, 0.66, and 1.0.

Figure 3.9: Application window background for alpha values of 0.0, 0.33, 0.66, and 1.0.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

127

Four output images
The four images shown in Figure 3, going from left to right, top to bottom, represent alpha values of 0.0,

0.33, 0.66, and 1.0 respectively.
An alpha value of 0.0
For an alpha value of 0.0, the output color is pure red as shown by the top-left image in Figure 3. In this

case, the gradient color scheme is totally transparent.
An alpha value of 1.0
For an alpha value of 1.0, the output colors range from pure green at the top to pure blue at the bottom

as shown in the bottom-right image in Figure 3. In this case, the gradient color scheme is totally opaque
and the red background color doesn't show through at all.

Alpha values of 0.33 and 0.66
For alpha values of 0.33 and 0.66, the output is a mix of the red background and the green/blue gradient

as shown by the top-right and bottom-left images in Figure 3.

(The image in the bottom-left corner of Figure 3 corresponds to what you should see if you run
(p. 115) the online version of this application.)

Conclusion regarding the Flex 3 version
These results suggest that the alpha value speci�ed by backgroundAlpha in Flex 3 applies to the colors

speci�ed by backgroundGradientColors and does not apply to the color speci�ed by backgroundColor
. .

In other words, the gradient colors can be made more or less transparent by changing the value of
backgroundAlpha allowing the red backgroundColor to show through the gradient colors. However,
the value of alpha doesn't appear to a�ect the background color.

If you modify the code in Listing 2 by removing the backgroundColor attribute, and then compile
and run it for di�erent values of alpha, you will see a similar result. In that case, however, the resulting
colors will be a mixture of the default gray background color shown in Figure 1 and the green/blue gradient
shown in the bottom right corner of Figure 3.

3.3.5.2 The Flex 4 version

The Flex 4 program named AppBackground03 replicates the behavior of the Flex 3 version named
AppBackground01 . By necessity, this version of the program is signi�cantly more complicated than the
Flex 3 version.

The skeleton code
The skeleton code for a Flex 4 project is shown in Listing 3.

Listing 3.14: Skeleton mxml code for a new Flex 4 project.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955"

minHeight="600">
<fx:Declarations>

<!-- Place non-visual elements (e.g., services,

value objects) here -->
</fx:Declarations>

</s:Application>

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

128 CHAPTER 3. FLEX

This is not the �rst time that you have seen this code. I discussed the skeleton code for a Flex 4 project in
an earlier lesson having to do with namespaces in Flex 4. Therefore, Listing 3 shouldn't require any further
discussion

The mxml �le for AppBackground03
An XML listing for the Flex 4 application named AppBackground03 is shown in Listing 4.

Listing 3.15: Flex 4 application named AppBackground03.

<?xml version="1.0" encoding="utf-8"?>
<!--AppBackground03.mxml
This is a Flex 4 replica of the Flex 3 project named

AppBackground01.

-->
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

backgroundColor="#ff0000">

<s:Rect width="100%" height="100%">
<s:fill>

<s:LinearGradient rotation="90">
<s:entries>

<s:GradientEntry color="0x00FF00"

ratio="0.0"

alpha="0.66"/>
<s:GradientEntry color="0x0000FF"

ratio="1.0"

alpha="0.66"/>
</s:entries>

</s:LinearGradient>

</s:fill>
</s:Rect>

</s:Application>

Essentially the same output
This Flex 4 code produces essentially the same visual output as the Flex 3 code shown in Listing 2. As

you can see, however, this code is much more complicated than the code in Listing 2. (Remember, Flex 4
is more powerful but is also more complicated.) Not only is the code more complicated, but the concepts
behind the code are also more complicated.

A style named backgroundGradientColors in Flex 3
The Flex 3 Application class has a property named backgroundColor , and a large number of

styles including backgroundGradientColors and backgroundAlpha . The code in Listing 2 uses that
property and those styles to control the appearance of the Flash window in Flex 3. Of particular signi�cance
here is the style named backgroundGradientColors .

No style named backgroundGradientColors in Flex 4
The Flex 4 Application class also has a property named backgroundColor . The value of that

property is set to red in Listing 4. It also has a style named backgroundAlpha but I'm not sure what
its purpose is. However, it does not have a style named backgroundGradientColors . Therefore, some
other way must be found to implement a gradient color scheme in Flex 4 in order to replicate the behavior
of the Flex 3 project shown in Listing 2.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

129

Replicating the behavior of AppBackground01
There may be a variety of ways to accomplish this. One of those ways is to cover the entire Flash window

with a rectangle and cause the rectangle to exhibit the desired gradient characteristics. This is illustrated
in Listing 4.

Listing 4 begins by adding a Rect object whose dimensions cover one-hundred percent of the Flash
window. (Note that all of the elements in Listing 4 are in the spark namespace named "s".)

What is a �ll element?
Unfortunately, this is the point where you need become heavily involved in the concepts of object-

oriented programming in ActionScript for the code in Listing 4 to make sense. I apologize in advance for
the explanation that follows. However, I don't know any other way to explain it, so I will explain it using a
combination ActionScript OOP terminology and mxml terminology.

What is a Rect element?
Rect is a class that represents a rectangle in the ActionScript package named spark.primitives .

The mxml code in Listing 4 causes an object of the Rect class to be placed in the Flash window in front
of the white default background. As mentioned above, the dimensions of the rectangle are such as to cover
the entire Flash window, even when the size of the window is changed by the user. (Note that the name
Rect begins with an upper-case character. That is a clue as to what is going on.)

Once again, what is a �ll element?
Note that the name of this element begins with a lower-case character. That is also a clue as to what is

going on. The �ll element refers to a property of the Rect object. According to the documentation 28 ,
the value of this property must be of type IFill .

What is type IFill ?
IFill is the name of an ActionScript interface . (Note that IFill begins with an upper-case character.

Once again, that is a clue.) Declaring that the value of the property named �ll must be of type IFill
means that the value must be a reference to an object of any class that satis�es the interface requirements
de�ned by IFill .

According to the documentation 29 , the following classes satisfy that requirement:

• BitmapFill 30

• LinearGradient 31

• RadialGradient 32

• SolidColor 33

Add a LinearGradient object
The next thing that appears in Listing 4 is an element named LinearGradient . (Note that Linear-

Gradient begins with an upper-case character.) According to the documentation 34 , LinearGradient is
a class in the ActionScript package named mx.graphics . (It isn't clear how it can be accessed via the
spark namespace, but as you can see in Listing 4, that is obviously the case.)

What have we accomplished so far?
Up to this point, the interpretation of the code in Listing 4 is that we have:

1. Created a Rect object, set its width and height attributes to completely cover the Flash window,
and added it to the Flash Window.

2. Created a LinearGradient object, set its rotation attribute to 90, and assigned its reference to
the �ll property of the Rect object.

28http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/spark/primitives/supportClasses/FilledElement.html#�ll
29http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/IFill.html
30http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/BitmapFill.html
31http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/LinearGradient.html
32http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/RadialGradient.html
33http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/SolidColor.html
34http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/LinearGradient.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

130 CHAPTER 3. FLEX

The element named entries
The next thing that we see in Listing 4 is an element named entries that is added to the LinearGra-

dient element. Once again, note that this name begins with a lower-case character.
The documentation 35 tells us that the LinearGradient class has a property named entries . The

documentation further tells us that the value of this property must be an array containing references to
objects of the class named GradientEntry . These objects "de�ne the �ll pattern for the gradient �ll."

Two GradientEntry elements
Referring back to Listing 4, we see that the two inner-most elements are two elements named Gradi-

entEntry .
We can now update the list of things that we have accomplished to read as follows:

1. Created a Rect object, set its width and height attributes to completely cover the Flash window,
and added it to the Flash Window.

2. Created a LinearGradient object, set its rotation attribute to 90, and assigned its reference to
the �ll property of the Rect object.

3. Created two GradientEntry objects, set the values of three attributes on each object with values
that I will explain later, placed those objects in a two-element array, and assigned that array to the
entries property of the LinearGradient object created earlier.

The rotation attribute of the LinearGradient object
Before getting into the attributes of the GradientEntry objects, let's go back and take a look at the

rotation attribute of the LinearGradient object.
According to the documentation 36 :

The LinearGradient class lets you specify the �ll of a graphical element, where a gradient speci�es
a gradual color transition in the �ll color. You add a series of GradientEntry objects to the
LinearGradient object's entries Array to de�ne the colors that make up the gradient �ll.

By default, the color transition is from left to right. However, by specifying a rotation value in degrees
for the rotation property, you can cause the color transition to take place along an invisible line that is
rotated by that amount relative to the horizontal.

Setting the rotation attribute to 90 degrees in Listing 4 causes the invisible line to be vertical and causes
the color transition to take place from the top to the bottom of the Flash window as shown in Figure 3.

The color attributes of the GradientEntry elements
According to the documentation 37 , GradientEntry is a class in the mx.graphics package. (Note

that the name begins with an upper-case character.) A GradientEntry element can de�ne several
attributes, including color , ratio , and alpha . Let's begin by taking a look at the color attribute.

The color attributes of the GradientEntry elements
The array of GradientEntry objects assigned to the entries property of the LinearGradient

object can contain a large number of objects. Each object has a color property, which is black by default.
The color transition produced by the LinearGradient object will begin with the color property of the

�rst object in the array, transition through the colors speci�ed by each successive object, and end up at the
color speci�ed by the last object in the array.

Only two colors for this case
The code in Listing 4 places only two GradientEntry objects in the array. The color property for the

�rst one is pure green and the color property for the second one is pure blue. That means that the color will
transition from pure green at the top of the Flash window to pure blue at the bottom of the Flash window
as shown by the bottom right image in Figure 3.

The alpha attributes of the GradientEntry elements

35http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/LinearGradient.html
36http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/LinearGradient.html
37http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/GradientEntry.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

131

The alpha attributes shouldn't require much of an explanation. They mean essentially the same thing
that the backgroundAlpha attribute means in Listing 2. The di�erence is that in Listing 2, the same
alpha value is applied to both colors involved in the color transition while in Listing 4, each color involved
in the transition has its own alpha value.

Replicate the behavior of the Flex 3 program
Setting the pair of alpha values in Listing 4 to 0.0, 0.33, 0.66, and 1.0 and then recompiling and re-running

the program for each value causes the Flash window to take on the same four appearances shown from left
to right, top to bottom in Figure 3.

The ratio attributes of the GradientEntry elements
The ratio attributes are a little more di�cult to explain than the color attributes or the alpha

attributes.
The documentation 38 describes the ratio property in the following way:

Where in the graphical element, as a percentage from 0.0 to 1.0, Flex samples the associated
color at 100%. For example, a ratio of 0.33 means Flex begins the transition to that color 33%
of the way through the graphical element.

A picture is worth...
Let's see if I can illustrate this with a picture. I will change both alpha values in Listing 4 to 1.0

to cause the gradient colors to be totally opaque. Then I will change the ratio value to 0.2 for the �rst
(green) GradientEntry object and change the ratio value to 0.8 for the second GradientEntry
object.

The output produced by the program with these attribute values is shown in Figure 4.

38http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/GradientEntry.html#ratio

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

132 CHAPTER 3. FLEX

Gradient output for narrow ratio zone.

Figure 3.10: Gradient output for narrow ratio zone.

Comparison with earlier results
The image shown in Figure 4 will be most meaningful if you compare it with the lower-right image in

Figure 3. Although that image was actually produced by the Flex 3 program, the code in Listing 4 would
produce the same output for alpha values of 1.0 and ratio values of 0.0 and 1.0 respectively.

For that case, there is a smooth gradient from the very top to the very bottom of the Flash window. In
Figure 4, however, there is no gradient in the top twenty-percent or the bottom twenty-percent of the Flash
window. Instead the entire gradient is squeezed in between those two limits.

End of this program
That ends my explanation of the Flex 4 project named AppBackground03 shown in Listing 4. I hope

that this explanation hasn't been too steeped in technical ActionScript details to be understandable, but as
I told you earlier, I don't know any other way to explain it. In fact, if it were not for the fact that I am very
experienced in ActionScript object-oriented programming, I doubt that I could have understood, much less
explained the code in Listing 4.

Upper case versus lower case
Oops, I almost forgot to explain the upper-case versus lower-case thing that I mentioned several times

above.
Element names and class names
Objects in Flex mxml are represented by element names. Objects are created from classes and the mxml

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

133

element names mirror the class names from which the objects are created. By convention, class names (and
interface names) begin with an upper-case character in ActionScript.

Properties and styles
Most objects have properties (such as the color property of a GradientEntry object) and some

objects have styles (such as the backgroundColor style of an Application object) . By convention,
property and style names in ActionScript begin with a lower-case character.

Representation of properties in Flex mxml code
Typically, object properties and styles are represented by attributes having the same names in Flex mxml.

However, as illustrated by Listing 4, in some cases, properties can also be represented by elements in Flex
4. (I don't recall having seen this in Flex 3 but that doesn't mean that it is not possible.)

Conclusions regarding upper-case versus lower-case
If you see an element name that begins with an upper-case character, (such as Rect , LinearGradient

, and GradientEntry in Listing 4) , that probably means that it represents an object.
If you see an element name that begins with a lower-case character, (such as �ll and entries in

Listing 4) , that probably means that it represents a property.

3.3.5.3 Another Flex 4 application

I told you earlier (p. 129) that in addition to the LinearGradient 39 class, another of the classes that satisfy
the interface requirements of the interface named IFill is RadialGradient 40 .

Figure 5 shows the Flash window for a Flex 4 project that I wrote using the RadialGradient class.

39http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/LinearGradient.html
40http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/RadialGradient.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

134 CHAPTER 3. FLEX

Flash window for Flex 4 project named AppBackground04.

Figure 3.11: Flash window for Flex 4 project named AppBackground04.

An exercise for the student
However, this time I am not going to explain the code that produced the output shown in Figure 5.

Instead, I am going to leave it as an exercise for the student to dig into the documentation and �gure out
how to write the code to produce that output on her own.

3.3.6 Run the programs

I encourage you to run (p. 115) the online versions of the programs that I have explained in this lesson. Then
copy the code from Listing 2 and Listing 4. Use that code to create Flex projects of your own. Compile and
run your projects. Experiment with the code, making changes, and observing the results of your changes.
For example, you might try changing the value of the rotation attribute in Listing 4 to see what that does.
Make certain that you can explain why your changes behave as they do.

3.3.7 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

135

3.3.8 Miscellaneous

note: Housekeeping material

• Module name: The Default Application Container - Flex 3 and Flex 4
• Files:

· Flex0102\Flex0102.htm
· Flex0102\Connexions\FlexXhtml0102.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

3.4 Using Flex 3 in a Flex 4 World41

note: Click test 42 to run this Flex program. (Click the "Back" button in your browser to
return to this page.)

3.4.1 Table of Contents

• Preface (p. 135)

· General (p. 135)
· Viewing tip (p. 136)

* Figures (p. 137)
* Listings (p. 137)

· Supplemental material (p. 137)

• Preview (p. 137)
• Discussion and sample code (p. 137)

· Download and use the free open-source Adobe Flex 3 SDK (p. 137)
· Download and use the free FlashDevelop IDE (p. 140)
· Download and use Flash Player 4 with the Flex 3 SDK (p. 149)

• Run the program (p. 153)
• Resources (p. 153)
• Miscellaneous (p. 153)

3.4.2 Preface

3.4.2.1 General

This lesson is part of a series of tutorial lessons dedicated to programming with Adobe Flex. The main
purpose of this lesson is to supplement the earlier lesson titled The Default Application Container - Flex 3
and Flex 4 43 with more information about the Flash Builder 4 IDE as well as information about the
FlashDevelop IDE.

41This content is available online at <http://cnx.org/content/m34631/1.1/>.
42http://cnx.org/content/m34631/latest/index.html
43http://cnx.org/content/m34604/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

136 CHAPTER 3. FLEX

Adobe released a new product named Flash Builder 4 in March of 2010 and immediately removed
all, or at least most of the references to Flex Builder 3 from their website. Those references that were
not removed were converted to references to Flash Builder 4. For example, the link (see Resources (p. 153)
) that previously opened an Adobe page for free downloading of Flex Builder 3 (for educational use) now
opens a page for free downloading of Flash Builder 4 for educational use.

What is Flash Builder 4?
Flash Builder 4 is an apparently upgraded version of Flex Builder 3 with a new name. Flex Builder 3

was based on Flex version 3, while Flash Builder 4 is primarily based on Flex version 4. However, Flash
Builder 4 still supports Flex 3 in addition to Flex 4.

Regardless of how you choose to get there, the objective is to create swf �les that can be executed in the
Flash Player. Flash Builder 4 is only one of several di�erent ways to create applications that will run in the
Flash Player.

The Flex 4 SDK and Flash Player 10
In conjunction with the release of Flash Builder 4, Adobe also released a new version (version 4) of the

free open-source Flex SDK and a new version (version 10) of the Flash Player.
Flex Builder 3 was based on Flex 3 and required Flash Player 9 (or later) for execution of the swf �les

produced by compiling a Flex application.
Flash Builder 4 is primarily based on Flex 4 and requires Flash Player 10 (or later) for execution of the

resulting swf �les.
Flash Builder 4 supports Flex 3
Fortunately, Flash Builder 4 still supports Flex 3 for backward compatibility. I will show you later in

this tutorial how to use Flash Builder 4 with Flex 3.
Should you use Flex 4?
If you are using Flex to create web applications in a professional capacity, you should probably become

familiar with Flex 4. It appears to provide some features that are not available in Flex 3.
More powerful but also more complicated
Flex 4 is more powerful than Flex 3. However, Flex 4 is also more complicated than Flex 3. In some

cases, Flex 4 also appears to create much larger swf �les than Flex 3 for solutions to the same problems.
Therefore, I suspect that some developers will not make an immediate switch to Flex 4, and that Flex 3 will
continue to be commonly used for a few more years.

Beginning in the Fall 2010 semester, I will upgrade my Introduction to XML course to include both Flex
3 and Flex 4.

Flex is a cryptic shorthand programming language
The important thing to remember is that Flex (versions 3 and 4) is simply cryptic xml-based shorthand

programming languages that can be used to create some aspects ActionScript programs. You should also
remember that anything that can be programmed in Flex can be programmed directly in ActionScript.
However, the reverse is not true.

When Adobe released Flex 4 and Flash Builder 4, they actually added a large number of classes to the
ActionScript application programming interface (API) . So, the real question is not whether you should
use Flex 4. The real question is whether the new classes that were added to the API are useful in your
application. If so, use them. If not, stick with the classes that were part of the API before the new classes
were added.

Understanding Flex
If you really want to understand Flex (instead of simply using it in cookbook fashion) you need to learn

about object-oriented programming using ActionScript.

3.4.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

137

3.4.2.2.1 Figures

• Figure 1 (p. 139) . Test program output for alpha values of 0.0, 0.33, 0.66, and 1.0.
• Figure 2 (p. 141) . The FlashDevelop IDE at startup.
• Figure 3 (p. 142) . The new project dialog.
• Figure 4 (p. 143) . The FlashDevelop IDE for a new project named test.
• Figure 5 (p. 145) . FlashDevelop text editor showing skeleton code for a Flex 3 project.
• Figure 6 (p. 147) . Test program output displayed in the Flash Player.
• Figure 7 (p. 148) . FlashDevelop showing the Debug/Release pull-down list.
• Figure 8 (p. 150) . The New Flex Project dialog in Flash Builder 4.
• Figure 9 (p. 152) . Contents of the project tree for the test program with Flash Builder 4.

3.4.2.2.2 Listings

• Listing 1 (p. 138) . Flex application named test.mxml.

3.4.2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 44 .

3.4.3 Preview

You learned how to create a Flex project named AppBackground01 using Flex Builder 3 in the earlier
lesson titled The Default Application Container - Flex 3 and Flex 4 45 . However, Flex Builder 3 is no longer
available from the Adobe website.

Therefore, in this lesson, I will explain how to create the same Flex project in three di�erent ways.
However, in this lesson, I will shorten the name of the project by changing the project name to test .

3.4.4 Discussion and sample code

Run the program
Before continuing, I suggest that you run (p. 135) the program to familiarize yourself with the screen

output.
Di�erent ways to create Flex 3 applications
Here is a list of four di�erent ways that you can create Flex 3 applications:

1. Use Flex Builder 3 if you already have it or can �nd it on the web.
2. Download and use the free open-source Adobe Flex 3 SDK (see Resources (p. 153)).
3. Download and use the free FlashDevelop IDE (see Resources (p. 153))
4. Download and use Flash Player 4 with the Flex 3 SDK (see Resources (p. 153))

3.4.4.1 Download and use the free open-source Adobe Flex 3 SDK

It is relatively easy to use the free open-source Flex 3 SDK to compile an mxml document and create a swf
�le that can be run stand-alone in the Flash Player. It is more di�cult to deploy that swf �le on a server.

Compiling an mxml �le from the command line

44http://www.dickbaldwin.com/toc.htm
45http://cnx.org/content/m34604/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

138 CHAPTER 3. FLEX

The main claim to fame for XML is that XML �les are plain text �les. An mxml �le is an XML �le.
Therefore, you can create an mxml �le containing mxml code, (such as that shown in Listing 1) , using
any plain text editor.

(The code shown in Listing 1 is the same as the code used in the Flex application in the earlier lesson
titled The Default Application Container - Flex 3 and Flex 4 46 .)

Listing 3.16: Flex application named test.mxml.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

backgroundColor="#FF0000"

backgroundGradientColors="[#00FF00, #0000FF]"

backgroundAlpha="1.0">

</mx:Application>

A test program
Assume that you have created such a �le named test.mxml and that you have stored the �le in the

following folder on a Windows system:

C:\jnk\1\test.mxml

Download the zip �le containing the Flex 3 SDK (see Resources (p. 153)) and extract the contents of the
zip �le into a folder of your choosing. That folder will then contain the following �le:

...\bin\mxmlc.exe

Compile the test program
If you open a command-line window in the bin folder and execute the following command on the

command line, the mxml �le will be compiled and a �le named test.swf will be created in the same folder
as the mxml �le:

mxmlc c:\jnk\1\test.mxml

If you have a stand-alone Flash Player (version 9 or later) on your system, you can open the �le named
test.swf in that player.

Testing your installation
You should have no di�culty using this approach to modify the backgroundAlpha values in the mxml

code shown in Listing 1 to produce swf �les that produce the four gradient images shown in Figure 1 when
run in a stand-alone Flash Player version 9 or later. (Note that the four images shown in Figure 1 are
actually screen shots of the swf �les running in a browser.)

46http://cnx.org/content/m34604/latest/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

139

Test program output for alpha values of 0.0, 0.33, 0.66, and 1.0.

Figure 3.12: Test program output for alpha values of 0.0, 0.33, 0.66, and 1.0.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

140 CHAPTER 3. FLEX

Four runs with di�erent alpha values
For this example, the mxml code shown in Listing 1 was modi�ed, compiled, and run four times in

succession by substituting four di�erent values of backgroundAlpha into the code.
Four output images
The four images shown in Figure 1, going from left to right, top to bottom, represent alpha values of 0.0,

0.33, 0.66, and 1.0 respectively.
An alpha value of 0.0
For an alpha value of 0.0, the output color is pure red as shown by the top-left image in Figure 1. In this

case, the gradient color scheme is totally transparent.
An alpha value of 1.0
For an alpha value of 1.0, the output colors range from pure green at the top to pure blue at the bottom

as shown in the bottom-right image in Figure 1. In this case, the gradient color scheme is totally opaque
and the red background color doesn't show through at all.

(The image in the bottom-right corner of Figure 1 corresponds to what you should see if you
run the online version of this application as described earlier (p. 135) .)

Alpha values of 0.33 and 0.66
For alpha values of 0.33 and 0.66, the output is a blend of the red background and the green/blue gradient

as shown by the top-right and bottom-left images in Figure 1.
Deploying the swf �le
If you don't have a stand-alone Flash Player on your system, or if you need to make the swf �le accessible

from a web site, you will need to deploy the swf �le in order to cause it to run in a Flash Player browser
plug-in 47 .

The simplest case
In the simplest case, this will require you to create a JavaScript �le and an html �le. Templates for those

two �les are provided in the Flex SDK folder with the following names and locations:

...\flex_sdk_3.5\templates\no-player-detection\AC_OETags.js

...\flex_sdk_3.5\templates\no-player-detection\index.template.html

I will leave it as an exercise for the student to read the online deployment instructions (see Application
Deployment in Resources (p. 153)) and learn how to deploy the swf �le.

3.4.4.2 Download and use the free FlashDevelop IDE

If you prefer not to work at the command-line level, another option is to download and use the free
FlashDevelop IDE (see Resources (p. 153)) .

Works with the Flex SDK
The FlashDevelop program works in conjunction with the free open-source Flex SDK to make it easier

to create, compile, and deploy Flex applications than is the case when working from the command line.
(The version of the FlashDevelop program that is available in June 2010 is not compatible with the Flex 4
SDK.)

See the Getting Started website
After installing the FlashDevelop program, you should open the Getting Started website (see

Resources (p. 153)) where you will �nd instructions for con�guring the program and getting it ready for
use.

The FlashDevelop IDE at startup
When you �rst start the FlashDevelop program running, you will see an integrated development envi-

ronment (IDE) that looks something like Figure 2.

47http://www.adobe.com/products/�ashplayer/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

141

The FlashDevelop IDE at startup.

Figure 3.13: The FlashDevelop IDE at startup.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

142 CHAPTER 3. FLEX

Create a new project
Selecting the Create a new project link on the right side of Figure 2 will open a dialog that looks much

like the one shown (in reduced form) in Figure 3.

The new project dialog.

Figure 3.14: The new project dialog.

The text is di�cult to read
Because of the reduced size, the text in Figure 3 is di�cult to read. The highlighted item in the list in

the upper left reads "Flex 3 Project."
Select Flex 3 Project
Then enter the name and location of the new project in the text �elds near the bottom of Figure 3, and

click the OK button. The IDE will change to look something like Figure 4.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

143

The FlashDevelop IDE for a new project named test.

Figure 3.15: The FlashDevelop IDE for a new project named test.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

144 CHAPTER 3. FLEX

The project tree
Note in particular the tree structure shown on the right side of Figure 4 that is rooted in test (AS3) .

This tree structure replicates the tree structure that is created in the folder that was earlier speci�ed as the
location for the project.

Re-opening the project later
However, that folder also contains a �le named test.as3proj that is not shown in Figure 4. You can

double-click this �le later to re-open the project in FlashDevelop.
Double-click the mxml �le
The next step is to double-click the �le shown in Figure 4 named Main.mxml . This will open that

�le in a text editor as shown in Figure 5.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

145

FlashDevelop text editor showing skeleton code for a Flex 3 project.

Figure 3.16: FlashDevelop text editor showing skeleton code for a Flex 3 project.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

146 CHAPTER 3. FLEX

Skeleton code
At this point, the text editor shown in Figure 5 contains the skeleton code for a Flex 3 project similar to

what you saw in Listing 1 48 of the earlier lesson titled The Default Application Container - Flex 3
and Flex 4 .

Modify and compile the program
Replace the skeleton code shown in Figure 5 with the code shown in Listing 1 (p. 138) above.
Then select Build Project on the Project menu.
Note the panel at the bottom of the IDE
You can drag and open a panel at the bottom of the IDE, if necessary, to expose the compiler output

text.
Quite a lot of text will appear in that panel.
If everything goes well, the last line of text in that panel will end with the words "Build succeeded" .
Test the program
Select Test Movie on the Project menu. If all goes well, The Flash Player should open and display

something very similar to Figure 6.

48http://cnx.org/content/m34604/latest/#Listing_1

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

147

Test program output displayed in the Flash Player.

Figure 3.17: Test program output displayed in the Flash Player.

Create a Release Build
If you like what you see at this point, select Release in the pull-down list shown near the upper-right

corner of Figure 7 and build the project again.
This will modify the contents of the folder named bin shown in Figure 4. This new version of the folder

named bin can be deployed on a server.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

148 CHAPTER 3. FLEX

FlashDevelop showing the Debug/Release pull-down list.

Figure 3.18: FlashDevelop showing the Debug/Release pull-down list.

Executing the Flex project
The folder named bin contains a �le named index.html as well as a swf �le. You can open that

html �le (p. 135) in a browser to play the Flash movie provided that the Flash Player plug-in, version 9 or

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

149

later, has been installed in the browser.
The swf �le can also be opened directly in a stand-alone Flash player, version 9 or later.
What is the di�erence between the Debug and Release builds?
While it is also possible to get an output that can be run in the Flash Player in Debug mode (the

opposite of Release mode) , the output produced in Release mode is normally smaller and more
compact.

Pros and cons of the FlashDevelop program
By now, you have probably concluded that the FlashDevelop program makes it easier to develop

and deploy Flex programs than is the case for the developing such programs from the command line.
Deployment made simple
In addition to providing a nice text editor, the program also handles the tedious task of creating the �les

necessary to deploy the application and creates a folder named bin containing all of the necessary �les.
The downside
The primary downside of FlashDevelop (relative to Flex Builder 3 or Flash Builder 4) , is that the

FlashDevelop program does not provide the drag-and-drop visual design mode for GUI components that is
provided by the two Adobe builder programs.

May or may not be important
Whether or not that is important will depend on the intended use of the IDE.
For example, students in my Introduction to XML course may consider that to be a serious shortcoming

because most of the lab projects in that course involve layouts for GUI components.
On the other hand, students in my ActionScript OOP programming course shouldn't have much need

for the drag-and-drop feature of the builder programs. That course concentrates more on programming
theory and less on drag-and-drop GUI construction.

3.4.4.3 Download and use Flash Player 4 with the Flex 3 SDK

Since Flex Builder 3 is no longer available for download from the Adobe website, those students who need
the drag-and-drop feature have little choice other than to use Flash Builder 4 in conjunction with Flex 3.
Therefore, I will tell you what I have learned through experimentation with Flash Builder 4.

Two di�erent versions
To begin with, Flash Builder 4 can be downloaded in at least two versions. One version is a stand-alone

program. The other version is a plug-in for Eclipse. I am running the plug-in version, so some of the screen
shots that follow may be di�erent from what you would see with the stand-alone version.

Similar to Flex Builder 3
Many aspects of Flash Builder 4 are very similar to Flex Builder 3, which you learned about in earlier

lessons. Therefore, I will concentrate on the di�erences that I have identi�ed.
Switch to the Flash perspective
When you start Flash Builder 4 for the �rst time, you may be given an opportunity to "Switch to the

Flash Perspective." If so, you should make the switch. Otherwise, things probably won't go well at all.
(Once I learned that I needed to make the switch, I never saw that option again.)

Create a new Flex project
To create a new Flex project, pull down the File menu and select New/Flex Project .
Specify Flex 3.x
When the New Flex Project dialog appears, be sure to select Web and specify Flex 3.x (Flex

3.5 as of June 2010 but this may change over time) as shown in Figure 8.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

150 CHAPTER 3. FLEX

The New Flex Project dialog in Flash Builder 4.

Figure 3.19: The New Flex Project dialog in Flash Builder 4.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

151

The Application server type
Unless you know a good reason to do otherwise, you should accept the default server type of

None/Other as shown in Figure 8.
Click the Finish button
After you provide the required information in the New Flex Project dialog , click the Finish

button at the bottom of the dialog. (Because of the way that I cropped the image, the Finish button is not
shown in Figure 8.)

Open the text editor
If necessary, select the Source tab at the top of the main panel to open the text editor in the main

panel as shown in Figure 9. This is essentially the same as Flex Builder 3. (The alternative is the Design
tab, which I discuss below.) Enter your mxml code in the text editor.

The Design tab
If you need to do drag-and-drop component layout, select the Design tab at the top of the main panel.

This will cause the lower-left panel to become a component panel and will cause the lower-right panel to
become a property panel in a manner similar to Flex Builder 3.

Build your project
Once you are satis�ed with your component layout and your mxml source code, select Build Project

on the Project menu.
Run your project
Then select Run on the Run menu. This may cause a dialog titled Run As to appear on the screen.

(I don't recall seeing this dialog in Flex Builder 3.) If the dialog does appear, select Web Application
and click the OK button.

This should cause the application to open and run in your default browser provided that the browser has
the Flash Player plug-in, version 9 or later, installed.

Create a Release Build
If you are happy with what you see at this point, select Export Release Build... on the Project

menu. This will open another dialog titled Export Release Build which will probably contain the correct
information. Click the Finish button on this dialog to cause the release build to be exported.

The bin-release folder
Clicking the Finish button causes the folder named bin-release (shown in the project tree in Figure

9) to be created and populated.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

152 CHAPTER 3. FLEX

Contents of the project tree for the test program with Flash Builder 4.

Figure 3.20: Contents of the project tree for the test program with Flash Builder 4.

Deploying the project
The bin-release folder contains everything necessary to deploy the project on a server. Opening the

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

153

�le named test.html in that folder will cause the Flash program to be played in a Flash Player browser
plug-in. In addition, the �le named test.swf can be played in a stand-alone Flash player.

The bin-debug folder
The bin-debug folder that you see in Figure 9 also contains �les named test.html and test.swf .

They can be opened in a browser and in a stand-alone Flash player to produce essentially the same results.
A smaller movie �le
However, the test.swf �le in the bin-release folder will often be much smaller and more compact

than the test.swf �le in the bin-debug folder, resulting in shorter download times from the server.

3.4.5 Run the program

I encourage you to run (p. 135) the online version of the program. Then copy the code from Listing 1. Use
that code to create Flex projects for all three approaches. Compile and run the projects. Experiment with
the code, making changes, and observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

3.4.6 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box

3.4.7 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: Using Flex 3 in a Flex 4 World
• Files:

· Flex0103\Flex0103.htm
· Flex0103\Connexions\FlexXhtml0103.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

3.5 Handling Slider Change Events in Flex 3 and Flex 449

note: Click SliderChangeEvent01 50 , SliderChangeEvent02 51 , and SliderChangeEvent03 52

to run the Flex programs from this lesson. (Click the "Back" button in your browser to return to
this page.)

49This content is available online at <http://cnx.org/content/m34633/1.1/>.
50http://cnx.org/content/m34633/latest/SliderChangeEvent01.html
51http://cnx.org/content/m34633/latest/SliderChangeEvent02.html
52http://cnx.org/content/m34633/latest/SliderChangeEvent03.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

154 CHAPTER 3. FLEX

3.5.1 Table of Contents

• Preface (p. 154)

· General (p. 154)
· Viewing tip (p. 154)

* Figures (p. 154)
* Listings (p. 154)

· Supplemental material (p. 155)

• General background information (p. 155)
• Preview (p. 155)
• Discussion and sample code (p. 161)

· The Flex 3 project named SliderChangeEvent01 (p. 161)
· The hybrid Flex3-4 project named SliderChangeEvent02 (p. 169)
· The Flex 4 project named SliderChangeEvent03 (p. 175)

• Run the programs (p. 175)
• Resources (p. 175)
• Complete program listings (p. 175)
• Miscellaneous (p. 177)

3.5.2 Preface

3.5.2.1 General

This lesson is part of a series of tutorial lessons dedicated to programming with Adobe Flex. The material
in this lesson applies to both Flex 3 and Flex 4.

3.5.2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

3.5.2.2.1 Figures

• Figure 1 (p. 156) . Browser image at startup for the Flex 3 project.
• Figure 2 (p. 158) . A toolTip on the slider.
• Figure 3 (p. 160) . Changing the height of the image.
• Figure 4 (p. 162) . Flex Builder 3 Components tab exposed.
• Figure 5 (p. 163) . Drag controls onto the Flex Builder 3 Design tab.
• Figure 6 (p. 165) . The Flex Builder 3 Properties tab exposed.
• Figure 7 (p. 170) . Browser image at startup for the hybrid project.
• Figure 8 (p. 172) . Flex Builder 4 Components tab exposed.
• Figure 9 (p. 174) . Drag controls onto the Flash Builder 4 Design tab.

3.5.2.2.2 Listings

• Listing 1 (p. 164) . XML code before setting properties for SliderChangeEvent01.
• Listing 2 (p. 166) . Beginning of XML code for SliderChangeEvent01.
• Listing 3 (p. 167) . Create and condition the slider.
• Listing 4 (p. 168) . Import an image.
• Listing 5 (p. 174) . Mxml code for the layout shown in Figure 9.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

155

• Listing 6 (p. 175) . Complete listing of SliderChangeEvent01.
• Listing 7 (p. 176) . Complete listing of SliderChangeEvent02.
• Listing 8 (p. 177) . Complete listing of SliderChangeEvent03.

3.5.2.3 Supplemental material

I also recommend that you study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 53 .

3.5.3 General background information

If you learn how to program using ActionScript 3, you will probably integrate large amounts of ActionScript
code into your Flex projects to provide complex event handling. In the meantime, it is possible to provide
simple event handlers in Flex by embedding a very small amount of ActionScript code in your Flex code. I
will illustrate and explain that capability in this lesson.

3.5.4 Preview

I encourage you to run (p. 153) the online version of the programs from this lesson before continuing.
Three Flex projects
I will present and explain three Flex projects in this lesson. The �rst project is named Slider-

ChangeEvent01 . This project was �rst developed using Flex Builder 3 and later developed using the
Flex 3 compiler and Flash Builder 4. The results were essentially the same in both cases. This project uses
classes from the Flex 3 (mx) library exclusively. (The screen shots shown in Figure 4, Figure 5, and Figure
6 are from Flex Builder 3.)

The second project
The second project is named SliderChangeEvent02 . This project was developed using the Flex 4

compiler and Flash Builder 4. This is a hybrid project that uses classes from both the Flex 3 (mx) library
and the Flex 4 (spark) library. The behavior of this project is similar to the behavior of the other project,
but they look di�erent in several ways that I will explain later.

The third project
The third project is named SliderChangeEvent03 . This project is a modi�cation of the hybrid

project in which the classes used are drawn exclusively from the Flex 4 spark library.
Order of upcoming explanations
I will explain the Flex 3 project named SliderChangeEvent01 in detail. Then I will explain the

di�erences between that project and the hybrid project named SliderChangeEvent02 . Finally, I will
explain the di�erences between that project and the project named SliderChangeEvent03 .

SliderChangeEvent01 output image at startup
The project named SliderChangeEvent01 starts running in Flash Player with the image shown in

Figure 1 appearing in the browser.

53http://www.dickbaldwin.com/toc.htm

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

156 CHAPTER 3. FLEX

Browser image at startup for the Flex 3 project.

Figure 3.21: Browser image at startup for the Flex 3 project.

The image that you see in Figure 1 consists of two Flex 3 Label controls, one Flex 3 HSlider control,

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

157

and one Flex 3 Image control arranged vertically and centered in the browser window.
The Application container
All XML documents must have a root element. The root of a Flex 3 application is a container element

that is often called the Application container. (You can learn all about the Application container
class at Adobe Flex 3.5 Language Reference 54 .)

Brie�y, the Application container, (which corresponds to the root element in the Flex XML code) ,
holds all other containers and components.

Vertical layout
By default, the Flex 3 Application container lays out all of its children vertically as shown in Figure

1. (As you will see later, this is not the case for the Flex 4 Application container.) The default vertical
layout occurs when the layout attribute is not speci�ed as is the case in this application. According to
the Adobe Flex 3.5 Language Reference 55 , the layout property:

"Speci�es the layout mechanism used for this application. Applications can use "vertical", "hor-
izontal", or "absolute" positioning. Vertical positioning lays out each child component vertically
from the top of the application to the bottom in the speci�ed order. Horizontal positioning lays
out each child component horizontally from the left of the application to the right in the speci�ed
order. Absolute positioning does no automatic layout and requires you to explicitly de�ne the
location of each child component. The default value is vertical."

A toolTip on the slider
If you point to the slider with your mouse, a tool tip showing the word Height will appear as shown in

Figure 2.

54http://livedocs.adobe.com/�ex/3/langref/index.html
55http://livedocs.adobe.com/�ex/3/langref/index.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

158 CHAPTER 3. FLEX

A toolTip on the slider.

Figure 3.22: A toolTip on the slider.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

159

The slider's thumb
The little triangle that you see on the slider in these images is often referred to as the slider's thumb .
As you will see later, the position of the thumb is intended to represent the height of the image below

the slider. The left end of the slider represents a height of 100 pixels and the right end represents a height
of 250 pixels (which just happens to be the actual height of the raw image) .

Changing the height of the image
If you grab the thumb with the mouse and move it to the left or the right, two obvious visual e�ects

occur. The �rst is that the value represented by the current position of the thumb is displayed above the
thumb as shown in Figure 3.

(As you will see later, the value is also displayed in a Flex 4 application, but by default the
appearance is white numerals on a black background.)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

160 CHAPTER 3. FLEX

Changing the height of the image.

Figure 3.23: Changing the height of the image.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

161

The second visual e�ect
The second visual e�ect of moving the thumb is that the height of the image changes to the value

represented by the position of the thumb on the slider.

(An Image object has a property named maintainAspectRatio . By default, the value of
this property is true. Therefore, when the height is changed, the width changes in a proportional
manner.)

Note that the upper-left corner of the image remains anchored to the same point as the height of the image
changes as shown in Figure 3.

3.5.5 Discussion and sample code

3.5.5.1 The Flex 3 project named SliderChangeEvent 01

Creating the layout
Once you create your new Flex 3 Project, there are at least three ways that you can create your layout

using Flex Builder 3:

1. Select the Design tab in the upper-middle panel of the IDE (see Figure 5) and drag your containers,
controls, and other components from the Components tab onto your design window.

2. Select the Source tab in Figure 5 and write the raw XML code that de�nes your layout.
3. A combination of 1 and 2 above

Expose the components tab
When you select the Design tab in the upper-middle window of the IDE, the lower-left window changes

to the appearance shown in Figure 4 with the Flex 3 (mx) Components tab exposed.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

162 CHAPTER 3. FLEX

Flex Builder 3 Components tab exposed.

Figure 3.24: Flex Builder 3 Components tab exposed.
Available for free at Connexions <http://cnx.org/content/col11207/1.18>

163

The list of available components that you see in Figure 4 also appears when you create a new
project in Flash Builder 4 and specify the use of the Flex 3 compiler.

A list of available components
Although they aren't all shown in Figure 4 due to space limitations, the Flex Builder 3 Components

tab lists all of the components that you can use in your Flex application grouped into the following categories:

• Custom
• Controls
• Layout
• Navigators
• Charts

Expose the design window
Selecting the Design tab mentioned above also exposes the Flex Builder 3 design window shown in

Figure 5.

Drag controls onto the Flex Builder 3 Design tab.

Figure 3.25: Drag controls onto the Flex Builder 3 Design tab.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

164 CHAPTER 3. FLEX

A similar design window is exposed when you create a new project in Flash Builder 4 specifying
the Flex 3 compiler and then select the Design tab. The purpose is the same but some of
the items at the top of the design window in Flash Builder 4 are di�erent.

Drag components onto the Design tab
You can drag components from the Components tab shown in Figure 4 onto the Design tab shown

in Figure 5 to create your layout in the Flex Builder 3 design mode or in the Flash Builder 4 design mode.
As you do that, the corresponding XML code is automatically generated for you.

For example, Figure 5 shows the results of dragging two Label controls, one HSlider control, and
one Image control from the Components tab of Figure 4 to the Design tab of Figure 5. (No attempt
has been made to set property values on any of the controls shown in Figure 5.) .

XML code before setting properties
If you select the Source tab at this point, you will see the XML code shown in Listing 1.

Listing 3.17: XML code before setting properties for SliderChangeEvent01.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label text="Label"/>
<mx:Label text="Label"/>
<mx:HSlider/>
<mx:Image/>

</mx:Application>

Compile and run
As you can see, the XML code in Listing 1 is pretty sparse. You could compile and run the application

at this point. All you would see would be two labels each containing the text Label and a slider covering
the default numeric range from 0 to 10.

Put some meat on the bones
We will need to put some meat on the bones of this skeleton mxml code in order to create our Flex

application. We can accomplish that by setting attribute values that correspond to properties of the controls.
Setting attribute values
Once again, we have three choices:

1. Go hardcore and edit the XML code shown in Listing 1 to add the necessary attributes.
2. Stay in Design mode, select each component in the Design tab, and use the Flex Properties

tab shown in Figure 6 to set the properties on that component.
3. A combination of 1 and 2 above.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

165

The Flex Builder 3 Properties tab exposed.

Figure 3.26: The Flex Builder 3 Properties tab exposed.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

166 CHAPTER 3. FLEX

The Flex Properties tab
When you select the Design tab shown in Figure 5, the Flex Properties tab shown in Figure 6

appears in the bottom-right of the IDE.
The appearance of the Flex Properties tab depends on which component is selected in the Design

tab. Figure 5 shows one of the Label controls selected, and Figure 6 shows the Flex Properties tab
corresponding to a Label control.

You will see a very similar properties tab if you create a new Flash Builder 4 project and specify
use of the Flex 3 compiler. Some of the items are in di�erent locations than Figure 6 but it
appears that the Flash Builder 4 properties tab has the same items for a Flex 3 project.

A variety of user input controls
The Flex Properties tab contains a variety of user input controls that allow you to specify values for

many of the commonly used properties that are allowed for the selected component.
Note, however, that the documentation for the Label control lists many properties that are not

supported by the Flex Properties tab shown in Figure 6. You can increase the number of properties
shown in the tab by selecting one of the controls at the top of the tab that converts the display into an
alphabetical list of properties. However, even this doesn't seem to show all of the properties de�ned by and
inherited by some components.

If you need to set properties that are not supported by the Flex Properties tab, you probably have
no choice but to select the Source tab shown in Figure 5 and write mxml code for those properties.

Will explain the code in fragments
I will explain the code for this Flex application in fragments. A complete listing of the application is

provided in Listing 6 near the end of the lesson.
Beginning of XML code for SliderChangeEvent01
The primary purpose of this application is to illustrate the use of inline event handling for Flex 3 slider

change events.
The application begins in Listing 2 which shows the beginning of the Application element and the

two complete Label elements shown at the top of Figure 1.

Listing 3.18: Beginning of XML code for SliderChangeEvent01.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Label text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

Make it easy - drag and drop
The two Label elements were created by dragging Label controls from the Components tab

shown in Figure 4 onto the Design tab shown in Figure 5. Then the attribute values were set using the
Flex Properties tab shown in Figure 6.

The attributes shown in Listing 2 represent common properties of a text label and shouldn't require
further explanation.

Create and condition the slider
Listing 3 adds a horizontal slider (HSlider) control to the application and sets the attributes that control

both its appearance and its behavior.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

167

Listing 3.19: Create and condition the slider.

<mx:HSlider minimum="100" maximum="250" value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

The slider is a little more complicated than a label and deserves a more thorough explanation.
The numeric properties
Recall that a slider represents a range of numeric values. The position of the thumb at any instant in

time selects a value from that range. The following three attributes shown in Listing 3 deal with the slider
and its numeric range:

• minimum - the numeric value represented by the left end of a horizontal slider.
• maximum - the value represented by the right end of a horizontal slider.
• value - the value that speci�es the initial position of the thumb when the slider is constructed and

�rst presented in the application's window.

The toolTip property
As you have probably already guessed, the value of the toolTip property speci�es the text that appears

in the tool tip when it is visible as shown in Figure 2.
The change property
This is where thing get a little more interesting. As the user moves the thumb to the left or right, the

slider �res a continuous stream of change events. You might think of this as the slider yelling out
"Hey, the position of my thumb has been changed." over and over as the thumb is being moved. (Also see
the discussion of the liveDragging (p. 168) property later.)

An event handler
The value that is assigned to the change attribute in Listing 3 is often referred to as an event handler

. This value speci�es what the application will do each time the slider �res a change event.
Three ways to handle events in Flex
There are at least three ways to handle event noti�cations in Flex:

• Registering an event handler in mxml
• Creating an inline event handler in the mxml de�nition
• Registering an event listener through ActionScript

The XML code in Listing 3 uses the inline approach.
The inline approach
The advantage of using the inline approach, (at least insofar as my Introduction to XML , students

are concerned) , is that it doesn't require you to create a Script element within the mxml or to create a
separate ActionScript �le.

Handling the slider's change event
Now consider the code that begins with the word change in Listing 3. The code within the quotation

marks can be a little hard to explain, but I will give it a try. (The code in quotation marks is actually an
ActionScript code fragment.)

Think of it this way
There is a Flex/ActionScript class named Event . The reference to event in Listing 3 is a reference

to an object of the Event class that comes into being each time the slider �res a change event .
The Event object encapsulates a property named currentTarget , which is described in the Flex 3

documentation as follows:

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

168 CHAPTER 3. FLEX

"The object that is actively processing the Event object with an event listener. For example, if
a user clicks an OK button, the current target could be the node containing that button or one
of its ancestors that has registered an event listener for that event."

The currentTarget is the slider
In this application, the value of currentTarget points to the slider which is �ring change events as

the user moves the thumb.
The value property of an HSlider object
The slider is an object of the HSlider class, which has a property named value . The value

property contains the current position of the thumb and is a number between the minimum and maximum
property values.

Get the current value of the thumb
Therefore, each time the slider �res a change event, the code on the right side of the assignment operator

within the highlighted quotation marks in Listing 3 gets the numeric value that indicates the current position
of the thumb.

Cause the image to be resized
This value is assigned to the height property of the image, causing the overall size of the image to be

adjusted, if necessary, to match the current position of the slider's thumb. (I could go into more detail as
to the sequence of events that causes the size of the image to change, but I will leave that as an exercise for
the student.)

The liveDragging property
That leaves one more attribute or property for us to discuss in Listing 3: liveDragging . This one is

much easier to understand.
The Flex 3 documentation has this to say about the liveDragging property:

"Speci�es whether live dragging is enabled for the slider. If false, Flex sets the value and values
properties and dispatches the change event when the user stops dragging the slider thumb. If
true, Flex sets the value and values properties and dispatches the change event continuously as
the user moves the thumb. The default value is false."

If liveDragging is false...
If you were to modify the code in Listing 3 to cause the value of the liveDragging property to be

false (or simply not set the attribute value to true) , the slider would only �re change events each time
the thumb stops moving (as opposed to �ring a stream of events while the thumb is moving) . This, in
turn, would cause the size of the image to change only when the thumb stops moving instead of changing
continuously (p. 167) while the thumb is moving.

An Image control
The Flex 3 documentation tells us:

The Image control lets you import JPEG, PNG, GIF, and SWF �les at runtime. You can also
embed any of these �les and SVG �les at compile time by using @Embed(source='�lename').

The primary output that is produced by compiling a Flex application is an swf �le that can be executed in
Flash Player.

The documentation goes on to explain that by using @Embed , you can cause resources such as images
to be embedded in the swf �le.

The advantage to embedding is that embedding the resource eliminates the requirement to distribute the
resource �les along with the swf �les. The disadvantage is that it causes the swf �le to be larger.

Import an image
Listing 4 imports an image from the �le named myimage.jpg that is located in the src folder of the

project tree. This image is embedded in the swf �le when the Flex application is compiled.

Listing 3.20: Import an image.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

169

<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</mx:Application>

The id property
Setting the id property on the image to myimg makes it possible to refer to the image in the

change-event code in Listing 3.

(Note that there is no requirement to set the value of the id property to be the same as the
name of the image �le as was done in Listing 4.)

The height property
Setting the height property of the image to 250 pixels in Listing 4 causes the image height to be 250

pixels when it is �rst displayed as shown in Figure 1.
The end of the application
Listing 4 contains the closing tag for the Application element signaling the end of the Flex 3 application

named SliderChangeEvent01 .

3.5.5.2 The hybrid Flex3-4 project named SliderChangeEvent02

The mxml project code
The mxml code for this project is shown in its entirety in Listing 7.
If you examine this code you will see that:

• It uses a Flex 4 spark s:Application element instead of a Flex 3 mx:Application element.
• It declares the standard set of Flex 4 namespaces.
• It uses a spark s:VGroup element as the container for the following Flex 3 components. (Note that

the Flex 3 project in Listing 6 doesn't require another container in addition to the mx:Application
container.) :

· mx:Label
· mx:Label
· mx:HSlider
· mx:Image

Otherwise, the mxml code for this project is the same as the code for the Flex 3 project shown in Listing 6.
The mixture of spark and mx components causes this to be a hybrid Flex 3-4 project.

Visual appearance of the project
If you run (p. 153) the online version of the project named SliderChangeEvent02 , you should see

an initial screen display similar to Figure 7.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

170 CHAPTER 3. FLEX

Browser image at startup for the hybrid project.

Figure 3.27: Browser image at startup for the hybrid project.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

171

Compare with the Flex 3 project
By comparing this screen output for the hybrid project with the screen output for the Flex 3 project in

Figure 1, you can immediately spot several signi�cant di�erences:

• The background is white instead of gray.
• The labels, the slider, and the image are not centered horizontally in the browser window.
• The appearance of the thumb on the slider is a circle instead of a triangle.

Behavior of the project
If you move the slider with the mouse, you will see that the behavior is essentially the same as the Flex

3 version of the project, including the display of a tool tip as shown in Figure 2 and the display of the slider
value as shown in Figure 3.

The spark s:Application element
The Flex 4 spark s:Application element di�ers from the Flex 3 mx:Application element in several

ways including the following:

• Default layout: Unlike the mx:Application element, the s:Application element does not have
a default vertical (p. 157) layout. By default, all components placed in the s:application element
are placed in the upper-left corner. (The s:VGroup container element was used in Listing 7 to
resolve this issue.)

• Default background color: The default background color of the s:Application element is
white, whereas the default background color of the mx:Application element is gray.

• Horizontal positioning: Unlike the mx:Application element which centers it components hori-
zontally by default, the default position of components placed in the s:Application element is the
upper-left corner.

The spark s:VGroup element
As shown in Listing 7, the s:VGroup element can be used to arrange the components in a vertical

sequence from top to bottom. However, placing components in an s:VGroup element does not cause them
to be centered horizontally. Instead, by default, the components end up on the left side of the container as
shown in Figure 7. If you want the components to be centered, you must write additional code to cause that
to happen.

The Flash Builder 4 Components tab
When you create a new Flex project in Flash Builder 4, if you specify the use of the Flex 3 compiler, the

Components tab in the resulting IDE will look like Figure 4. However, if you specify the Flex 4 compiler
when you create the new project, the Components tab will look like Figure 8.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

172 CHAPTER 3. FLEX

Flex Builder 4 Components tab exposed.

Figure 3.28: Flex Builder 4 Components tab exposed.
Available for free at Connexions <http://cnx.org/content/col11207/1.18>

173

Numerous di�erences
If you compare Figure 8 with Figure 4, you will see numerous di�erences between the two lists. Some of

the names are the same and some of the names are di�erent. Even though some of the names are the same,
most of the components that you see in Listing 8 are Flex 4 spark components and the components that you
see in Figure 4 are Flex 3 mx components and they are represented by di�erent classes in the class library.

However, as you will see later, the Image component in the Flex 4 Component list is actually
a Flex 3 mx component. That may also be the case for some of the other components as well.

Same name doesn't guarantee same appearance or same behavior
While the appearance and behavior of a Flex 4 spark component may be the same as the appearance

and behavior of a Flex 3 mx component with the same name, there is no guarantee that will be the case.
They are entirely di�erent components and the only way you can be sure is to study the documentation.

As you saw earlier, the appearance of an mx:HSlider used inside an s:Application element
is di�erent from an mx:HSlider used inside an mx:Application element. Therefore, if
the appearance and behavior of the components in your project are really critical, you should
probably avoid mixing Flex 3 and Flex 4 components.

No drag-and-drop support for hybrid projects
Another rami�cation of the fact that the components in Figure 8 are spark components is that you cannot

create hybrid projects using drag-and-drop programming alone. If you drag the components in Figure 8 into
the design pane of Flash Builder 4, your project will be populated with Flex 4 spark components. If you
want the project to be populated with Flex 3 mx components, you will have to manually edit the mxml code
to accomplish that. That may be another reason to avoid hybrid projects.

Drag-and-drop results
Figure 9 shows the results of dragging one VGroup layout, two Label controls, one HSlider

control, and one Image control from the Flash Builder 4 Components panel into the Design panel.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

174 CHAPTER 3. FLEX

Drag controls onto the Flash Builder 4 Design tab.

Figure 3.29: Drag controls onto the Flash Builder 4 Design tab.

Compare Figure 9 with Figure 5 to see the di�erences in background color and layout.
Mxml code for the layout shown in Figure 9
Listing 5 shows the Flex 4 mxml code that corresponds to the layout shown in Figure 9.

Listing 3.21: Mxml code for the layout shown in Figure 9.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600">
<fx:Declarations>

<!-- Place non-visual elements (e.g., services,

value objects) here -->

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

175

</fx:Declarations>
<s:VGroup x="0" y="0" width="200" height="200">

<s:Label text="Label"/>
<s:Label text="Label"/>
<s:HSlider/>
<mx:Image/>

</s:VGroup>
</s:Application>

Mostly Flex 4 spark components
The most important thing to note about Listing 5 is that the VGroup , Label , and HSlider

components that were dragged from the Component tab shown in Figure 8 into the Design panel
shown in Figure 9 are all declared using the spark (s) namespace. Curiously, however, the Image control
shows up in the code as mx:Image instead of s:Image .

3.5.5.3 The Flex 4 project named SliderChangeEvent03

Updating the mxml code in Listing 5 by applying the properties from Listing 7 to the Label and HSlider
components produces the complete Flex 4 project named SliderChangeEvent03 shown in Listing 8.

If you run (p. 153) the online versions of SliderChangeEvent0 2 and SliderChangeEvent03
side-by-side in di�erent browser windows, you will probably notice a few subtle di�erences in the look and
feel of the two programs. Here are some of the di�erences that I have noticed:

• There is less space between the labels and the slider in the Flex 4 version.
• There is less space between the edge of the Flash window and the top and left ends of the labels and

the slider in the Flex 4 version.
• The overall length of the slider is shorter in the Flex 4 version.
• The treatment of the little popup window that shows the value of the slider is di�erent between the

two. It has black letters on a cream-colored background in the hybrid version as in Figure 3, but it
has white letters on a black background in the Flex 4 version.

3.5.6 Run the programs

I encourage you to run (p. 153) the online versions of the programs from this lesson. Then copy the code
from Listing 6, Listing 7, and Listing 8. Use that code to create Flex projects of your own. Compile and
run your projects. Experiment with the code, making changes, and observing the results of your changes.
Make certain that you can explain why your changes behave as they do.

3.5.7 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

3.5.8 Complete program listing

Complete listings of the programs discussed in this lesson are shown in Listing 6, Listing 7, and Listing 8
below.

Listing 3.22: Complete listing of SliderChangeEvent01.

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

176 CHAPTER 3. FLEX

<?xml version="1.0" encoding="utf-8"?>

<!--
SliderChangeEvent01

Illustrates the use of inline event handling for slider

change events.

-->

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

<mx:HSlider minimum="100" maximum="250" value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</mx:Application>

Listing 3.23: Complete listing of SliderChangeEvent02.

<?xml version="1.0" encoding="utf-8"?>
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx">
<s:VGroup>

<mx:Label
text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label
text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

<mx:HSlider
minimum="100"

maximum="250"

value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

<mx:Image

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

177

id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</s:VGroup>
</s:Application>

Listing 3.24: Complete listing of SliderChangeEvent03.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600">

<s:VGroup x="0" y="0" width="200" height="200">
<s:Label

text="Put your name here" fontSize="16"

fontWeight="bold"/>
<s:Label

text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>
<s:HSlider

minimum="100"

maximum="250"

value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />
<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250"/>
</s:VGroup>

</s:Application>

3.5.9 Miscellaneous

note: Housekeeping material

• Module name: Handling Slider Change Events in Flex 3 and Flex 4
• Files:

· Flex0104\Flex0104.htm
· Flex0104\Connexions\FlexXhtml0104.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

178 CHAPTER 3. FLEX

3.6 Flex Resources56

3.6.1 Table of Contents

• Preface (p. 178)
• Resources (p. 178)
• Miscellaneous (p. 180)

3.6.2 Preface

This tutorial lesson is part of a series of lessons dedicated to programming using Adobe Flex.
The purpose of this document is to provide a list of links to online Flex and ActionScript resources to

supplement the other lessons in the series.

note: The material in these lessons is based on Flex version 3 and Flex version 4.

3.6.3 Resources

• Baldwin's Flex programming website 57

• Baldwin's ActionScript programming website 58

• Adobe Flex Home 59

• Download free open-source Adobe Flex 3.5 SDK 60

· Adobe Flex SDK Installation and Release Notes 61

· Application Deployment 62

• Download free open-source Adobe Flex 4 SDK 63

• Download free FlashDevelop IDE 64

· Getting Started with FlashDevelop 65

• Download Adobe Flash Builder 4 Standard for students 66

• Download Adobe Flash Player 67

• Download Adobe Flash Player Uninstallers 68

• Download Adobe Air 69

• Download various Adobe products 70

• Flex Developer Center 71

• Flex in a Week video training 72

• Adobe Flex Builder 3 - Getting Started 73

56This content is available online at <http://cnx.org/content/m34542/1.2/>.
57http://www.dickbaldwin.com/tocFlex.htm
58http://www.dickbaldwin.com/tocActionScript.htm
59http://www.adobe.com/products/�ex/?promoid=BPDEQ
60http://www.adobe.com/cfusion/entitlement/index.cfm?e=�ex3sdk
61http://www.adobe.com/support/documentation/en/�ex/3/releasenotes_�ex3_sdk.html#installation
62http://livedocs.adobe.com/�ex/3/html/help.html?content=Part3_deploy_1.html
63http://opensource.adobe.com/wiki/display/�exsdk/Download+Flex+4
64http://www.�ashdevelop.org/wikidocs/index.php?title=Main_Page
65http://www.�ashdevelop.org/wikidocs/index.php?title=Getting_Started
66https://freeriatools.adobe.com/�ex/
67http://www.adobe.com/support/�ashplayer/downloads.html
68http://www.adobe.com/support/�ashplayer/downloads.html
69http://get.adobe.com/air/
70http://www.adobe.com/downloads/
71http://www.adobe.com/devnet/�ex/
72http://www.adobe.com/devnet/�ex/videotraining/
73http://learn.adobe.com/wiki/display/Flex/Getting+Started

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

179

• Getting Started with Flex 3 - online O'Reilly book by Jack Herrington and Emily Kim 74

• Adobe Flex 3 Help 75

· Adobe Flex 3.5 Language Reference 76

· Building and Deploying Flex 3 Applications 77

· Programming ActionScript 3.0 78

· ActionScript language and syntax 79

• Adobe Flex 4 reference material 80

• Using Flash Builder 4 81

• Flex.org 82

• Wikipedia on MXML 83

• ActionScript 3 guides, tutorials, and samples 84

• ActionScript.org 85

• ActionScript 3: The Language of Flex 86

• ActionScript Custom Components 87

• ActionScript language and syntax 88

• Comparing, including, and importing ActionScript code 89

• Programming ActionScript 3.0 90

• Getting Started with ActionScript 3.0 91

• Modular applications overview 92

• ActionScript 3 Language Speci�cation 93

• Beginners Guide to Getting Started with AS3 94 (Running the compiler from the command line.)
• Tips for learning ActionScript 3.0 95

• ActionScript Technology Center 96

• Adobe Flash Platform 97

• Adobe Flash Player 98

• Adobe Air 99

• ActionScript language references 100

• Class property attributes 101

74http://www.adobe.com/devnet/�ex/pdfs/getting_started_with_Flex3.pdf
75http://livedocs.adobe.com/�ex/3/html/help.html
76http://livedocs.adobe.com/�ex/3/langref/index.html
77http://livedocs.adobe.com/�ex/3/html/help.html?content=Part3_Build_Deploy_1.html
78http://livedocs.adobe.com/�ex/3/html/help.html?content=Part6_ProgAS_1.html
79http://livedocs.adobe.com/�ex/3/html/help.html?content=03_Language_and_Syntax_01.html
80http://help.adobe.com/en_US/�ex/using/index.html
81http://help.adobe.com/en_US/�ashbuilder/using/index.html
82http://�ex.org/
83http://en.wikipedia.org/wiki/MXML
84http://www.adobe.com/devnet/actionscript/as3.html
85http://www.actionscript.org/index.php
86http://www.artima.com/lejava/articles/actionscript.html
87http://livedocs.adobe.com/�ex/3/html/help.html?content=Part3_as_components_1.html
88http://livedocs.adobe.com/�ex/3/html/help.html?content=03_Language_and_Syntax_01.html
89http://livedocs.adobe.com/�ex/3/html/help.html?content=usingas_4.html
90http://livedocs.adobe.com/�ex/3/html/help.html?content=Part6_ProgAS_1.html
91http://bauhouse.wordpress.com/2008/07/06/getting-started-with-actionscript-30/
92http://livedocs.adobe.com/�ex/3/html/help.html?content=modular_2.html
93http://livedocs.adobe.com/specs/actionscript/3/wwhelp/wwhimpl/js/html/wwhelp.htm?href=as3_speci�cation.html
94http://www.senocular.com/�ash/tutorials/as3withmxmlc/
95http://www.adobe.com/devnet/actionscript/articles/actionscript_tips.html
96http://www.adobe.com/devnet/actionscript/
97http://www.adobe.com/�ashplatform/
98http://www.adobe.com/products/�ashplayer/?promoid=DJDWD
99http://www.adobe.com/products/air/?promoid=DJDTL

100http://www.adobe.com/devnet/actionscript/references/
101http://livedocs.adobe.com/�ex/3/html/help.html?content=04_OO_Programming_05.html

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

180 CHAPTER 3. FLEX

• Embedding Resources with AS3 102

3.6.4 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: Flex Resources
• Files:

· Flex9999\Connexions\FlexXhtml9999.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download
a PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

102http://www.bit-101.com/blog/?p=853

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

INDEX 181

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A actionscript, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101), � 3.3(115), � 3.4(135),
� 3.5(153), � 3.6(178)
actionscript resources, � 2.1(5), � 2.2(10),
� 2.3(16), � 3.1(91), � 3.2(101)
attribute, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101), � 3.3(115), � 3.4(135),
� 3.5(153)

C class, � 3.3(115), � 3.4(135), � 3.5(153)
CNXML, � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101)
color, � 3.3(115), � 3.4(135), � 3.5(153)

D dtd, � 2.3(16), � 3.1(91), � 3.2(101)

E element, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101), � 3.3(115), � 3.4(135),
� 3.5(153)
event, � 3.5(153)
event handler, � 3.5(153)
extensible markup language, � 2.1(5),
� 2.2(10), � 2.3(16), � 3.1(91), � 3.2(101),
� 3.3(115), � 3.4(135), � 3.5(153)

F �ex, � 2.1(5), � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101), � 3.3(115), � 3.4(135), � 3.5(153),
� 3.6(178)
�ex mxml, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101), � 3.3(115), � 3.4(135),
� 3.5(153)
�ex resources, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101)

G gradient, � 3.3(115), � 3.4(135), � 3.5(153)

H HTML, � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101)

I image, � 3.5(153)

J Java, � 2.8(61)

JavaScript, � 2.7(60), � 2.8(61), � 2.9(63)
JavaScript Functions, � 2.10(83)
JavaScript object, � 2.10(83)
JSON, � 2.7(60), � 2.8(61), � 2.9(63),
� 2.10(83)
JSON string, � 2.10(83)

M markup, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101)
meta data, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101)
meta language, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101)
MXML, � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101), � 3.3(115), � 3.4(135), � 3.5(153)

N namespace, � 3.1(91), � 3.2(101)

P PHP, � 2.8(61)
property, � 3.3(115), � 3.4(135), � 3.5(153)

R rendering, � 2.1(5), � 2.2(10), � 2.3(16),
� 3.1(91), � 3.2(101)

S slider, � 3.5(153)
structured document, � 2.1(5), � 2.2(10),
� 2.3(16), � 3.1(91), � 3.2(101)
style, � 3.3(115), � 3.4(135), � 3.5(153)

T tag, � 2.1(5), � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101)
transparency, � 3.3(115), � 3.4(135), � 3.5(153)

V valid, � 2.3(16), � 3.1(91), � 3.2(101)

W well-formed, � 2.3(16), � 3.1(91), � 3.2(101)

X XHTML, � 2.2(10), � 2.3(16), � 3.1(91),
� 3.2(101)
XML, � 1.1(1), � 2.1(5), � 2.2(10), � 2.3(16),
� 2.4(24), � 2.5(41), � 2.6(52), � 3.1(91),
� 3.2(101), � 3.3(115), � 3.4(135), � 3.5(153)

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

182 ATTRIBUTIONS

Attributions

Collection: Introduction to XML
Edited by: R.G. (Dick) Baldwin
URL: http://cnx.org/content/col11207/1.18/
License: http://creativecommons.org/licenses/by/4.0/

Module: "Preface, Introduction to XML"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47965/1.2/
Pages: 1-3
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Brief Introduction to XML"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34546/1.5/
Pages: 5-10
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "XML - Tags, Elements, Content, and Attributes"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34548/1.5/
Pages: 10-15
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "XML - Well-Formed and Valid Documents"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34557/1.8/
Pages: 16-23
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Xml0100 Writing XML Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47966/1.4/
Pages: 24-40
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Xml0110 Transforming XML Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47967/1.2/
Pages: 41-51
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

ATTRIBUTIONS 183

Module: "Xml0120 Validating XML Review"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m47969/1.2/
Pages: 52-60
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0110: Preface to JSON"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48964/1.1/
Pages: 60-61
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Json0120: What is JSON?"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48968/1.1/
Pages: 61-63
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Json0130: JSON and JavaScript"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m48966/1.6/
Pages: 63-83
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "Json0140-Calling External JavaScript Functions"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m51864/1.1/
Pages: 83-90
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/4.0/

Module: "XML - Namespaces - Flex 3"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34600/1.1/
Pages: 91-101
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "XML - Namespaces - Flex 4"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34602/1.1/
Pages: 101-115
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "The Default Application Container - Flex 3 and Flex 4"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34604/1.2/
Pages: 115-135
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

184 ATTRIBUTIONS

Module: "Using Flex 3 in a Flex 4 World"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34631/1.1/
Pages: 135-153
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Handling Slider Change Events in Flex 3 and Flex 4"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34633/1.1/
Pages: 153-177
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Module: "Flex Resources"
By: R.G. (Dick) Baldwin
URL: http://cnx.org/content/m34542/1.2/
Pages: 178-180
Copyright: R.G. (Dick) Baldwin
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11207/1.18>

Introduction to XML
A series of lessons designed to teach XML Fundamentals. Some of the modules use Adobe Flex as the
teaching vehicle.

About OpenStax-CNX
Rhaptos is a web-based collaborative publishing system for educational material.

